Linear Algebra I, Homework 2

Due Date: Friday, September 23, in class.

Problems marked (\star) are bonus ones.
2.1. Let V be a vector space, $U, W \subset V$ are vector subspaces.
(a) Show that the intersection $U \cap W$ is a vector subspace of V.
(b) Denote by $U+W$ the set $\{u+w \mid u \in U, w \in W\}$. Show that $U+W$ is a vector subspace of V.
(c) Assuming that V is finite-dimensional, show that there exist bases $\left\{u_{i}\right\}$ of U and $\left\{w_{j}\right\}$ of W, such that there intersection is a basis of $U \cap W$, and union (after removing repetitions) is a basis of $U+W$.
2.2. Which of the following maps from \mathbb{R}^{3} to \mathbb{R}^{2} are linear maps?
(a) $f(x, y, z)=(x y z, x+y+z)$;
(b) $g(x, y, z)=(x+y, 2 x-z)$.
2.3. Find the kernel and the image of the following linear maps:
(a) $\mathcal{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \mathcal{A} v=0$;
(b) $\mathcal{A}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, \mathcal{A} v=v$;
(c) $\mathcal{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z)=(0, z, x)$;
(d) $\mathcal{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}, \mathcal{A}(x, y, z, t)=(x+y, y-z, z-t)$;
$(\star) \mathcal{A}: \mathbb{R}[x] \rightarrow \mathbb{R}[x],(\mathcal{A} p)(x)=p\left(\alpha x^{2}+\beta\right)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
2.4. Let $\mathcal{A}: V \rightarrow W$ be a surjective linear map, and let $U \subset W$ be a subspace. Show that the preimage

$$
\mathcal{A}^{-1}(U)=\{v \in V \mid \mathcal{A}(v) \in U\}
$$

is a linear subspace of V.
2.5. Let $\mathcal{A}: V \rightarrow W$ be an isomorphism (i.e., bijective linear map). Show that the inverse map \mathcal{A}^{-1} is linear.
2.6. (\star) Find dimensions of linear spaces from Exercises 1.3 and 1.4 (or show that they do not have finite bases).

