Linear Algebra I, Homework 2

Due Date: Friday, September 23, in class.

Problems marked (\star) are bonus ones.

- **2.1.** Let V be a vector space, $U, W \subset V$ are vector subspaces.
 - (a) Show that the intersection $U \cap W$ is a vector subspace of V.
 - (b) Denote by U + W the set $\{u + w \mid u \in U, w \in W\}$. Show that U + W is a vector subspace of V.

(c) Assuming that V is finite-dimensional, show that there exist bases $\{u_i\}$ of U and $\{w_j\}$ of W, such that there intersection is a basis of $U \cap W$, and union (after removing repetitions) is a basis of U + W.

2.2. Which of the following maps from \mathbb{R}^3 to \mathbb{R}^2 are linear maps?

(a)
$$f(x, y, z) = (xyz, x + y + z);$$

- (b) g(x, y, z) = (x + y, 2x z).
- **2.3.** Find the kernel and the image of the following linear maps:
 - (a) $\mathcal{A}: \mathbb{R}^n \to \mathbb{R}^n, \, \mathcal{A}v = 0;$
 - (b) $\mathcal{A}: \mathbb{C}^n \to \mathbb{C}^n, \, \mathcal{A}v = v;$
 - (c) $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3, \ \mathcal{A}(x, y, z) = (0, z, x);$
 - (d) $\mathcal{A}: \mathbb{R}^4 \to \mathbb{R}^3, \ \mathcal{A}(x, y, z, t) = (x + y, y z, z t);$
 - (*) $\mathcal{A}: \mathbb{R}[x] \to \mathbb{R}[x], (\mathcal{A}p)(x) = p(\alpha x^2 + \beta)$, where $\alpha, \beta \in \mathbb{R}$ are fixed numbers.
- **2.4.** Let $\mathcal{A}: V \to W$ be a surjective linear map, and let $U \subset W$ be a subspace. Show that the preimage

$$\mathcal{A}^{-1}(U) = \{ v \in V \, | \, \mathcal{A}(v) \in U \}$$

is a linear subspace of V.

- **2.5.** Let $\mathcal{A}: V \to W$ be an isomorphism (i.e., bijective linear map). Show that the inverse map \mathcal{A}^{-1} is linear.
- 2.6. (*) Find dimensions of linear spaces from Exercises 1.3 and 1.4 (or show that they do not have finite bases).