Linear Algebra I, Homework 3

Due Date: Friday, September 30, in class.

Problems marked (\star) are bonus ones.

- **3.1.** Compute matrices of linear maps from Problem 2.3 in some bases. Which of the matrices do not depend on bases?
- **3.2.** Let V be the space of polynomials with real coefficients of degree at most 2, and $\alpha \in \mathbb{R}$ is a fixed number, $\alpha \neq 0$. Define two maps $\mathcal{A}, \mathcal{B}: V \to V$ by

$$(\mathcal{A}p)(x) = p(\alpha x); \qquad (\mathcal{B}p)(x) = p(x+\alpha).$$

Show that \mathcal{A}, \mathcal{B} are linear operators, and compute the matrices of \mathcal{A} and \mathcal{B} in the basis $\{1, x, x^2\}$.

3.3. Define $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & -2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 2 & 1 & 1 \end{pmatrix}$. Compute the following products if possible:

- (a) AB; (b) BA; (c) CA; (d) C^2 ; (e) A^2 ; (f) AC; (g) CB; (h) CAB.
- **3.4.** Let U, V be finite-dimensional, $\mathcal{A} \in \text{Hom}(U, V)$. Show that there exist bases of U and V such that the matrix A of \mathcal{A} in these bases will have the following form: $a_{ii} = 1$ for $1 \leq i \leq \dim \operatorname{im} \mathcal{A}$, and all the other elements of A are zeros.
- **3.5.** Compute the matrix of the operator A^m (for arbitrary $m \in \mathbb{N}$) for the following A:

(a)
$$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (d) $\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$

3.6. (a) Find all the matrices $X \in M_2$ commuting with $A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$.

(*) Find all the matrices $X \in M_n$ commuting with the matrix from Problem 2.5(d).

3.7. Find all the solutions x of the following linear systems

$$(a) \begin{cases} x_1 + x_2 + 2x_3 = 1\\ 2x_1 - x_2 &= 3 \end{cases}$$

$$(b) \begin{cases} x_1 - x_2 &= 3\\ + 2x_2 - x_3 = 10\\ 3x_1 + 2x_2 + 5x_3 = -2 \end{cases}$$

$$(c) \begin{cases} 2x_1 - x_2 + x_3 = 3\\ -x_1 + 2x_2 - x_3 = -5\\ x_1 + x_2 &= 2 \end{cases}$$

$$(d) \begin{cases} 2x_1 - x_2 + x_3 = 5\\ -x_1 + 2x_2 - x_3 = -4\\ x_1 + x_2 &= 1 \end{cases}$$