Linear Algebra I, Homework 4

Due Date: Friday, October 7, in class.

Problems marked (\star) are bonus ones.

4.1. Solve the following system of linear equations for every *a*:

$$\begin{cases} (1+a)x_1 + x_2 + x_3 = a^2 + 3a \\ x_1 + (1+a)x_2 + x_3 = a^3 + 3a^2 \\ x_1 + x_2 + (1+a)x_3 = a^4 + 3a^3 \end{cases}$$

4.2. Compute the rank of the following matrices

$$(a) \begin{pmatrix} -1 & 1 & 3\\ 1 & 6 & 2\\ 4 & 2 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} 0 & 1 & 1\\ 3 & 2 & 3\\ 2 & 0 & 1 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -1 & 1 & 0\\ 3 & 2 & 1 & 1\\ 4 & 0 & 2 & -1 \end{pmatrix} \qquad (d) \begin{pmatrix} 2 & 0 & 3\\ 2 & 1 & 1\\ 3 & 0 & -1\\ 0 & 1 & 0 \end{pmatrix}$$

4.3. Are the following matrices invertible? If yes, compute the inverses.

$$(a) \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad (b) \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 4 & 3 & 5 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & 0 & 1 \\ 3 & 3 & 1 \\ 4 & 0 & 2 \end{pmatrix} \qquad (d) \begin{pmatrix} 2 & 1 & 3 & 0 \\ 0 & 1 & -2 & 1 \\ 3 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

4.4. Let $A, B \in M_{m \times n}$, and assume that the homogeneous systems Ax = 0 and Bx = 0 have the same set of solutions. Show that A can be transformed into B by elementary row transformations.

10 1

 \sim

4.5. Compute determinants of the following matrices using the definition of determinant only:

	/0	0	0	0	1		(0	0	1	-1	0 \
(a)	0	0	0	1	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$		1	-1	0	0	$\begin{bmatrix} 0\\ 0\\ -1 \end{bmatrix}$
	0	0	1	0	0	(b)	0	1	-1	0	0
	0	1	0	0	0		0	0	0	1	-1
	$\backslash 1$	0	0	0	0/		$\backslash 1$	1	0	0	0 /

4.6. (a) Show that if A is an invertible matrix, then A^n is also invertible for any positive integer n.

(b) Is it true that if A^n is invertible for some positive integer n then A is invertible?

- (c) Find matrices $A \in M_{n \times m}$ and $B \in M_{m \times n}$ such that AB = I, but $BA \neq I$.
- **4.7.** (*) Let dim V = n, and let $C \subset \text{End}(V)$ be a finite set such that every $f \in \text{End}(V)$ is a linear combination of products of elements of C. What is the minimal possible number of elements of C?