Linear Algebra I, Homework 4

Due Date: Friday, October 7, in class.

Problems marked (\star) are bonus ones.
4.1. Solve the following system of linear equations for every a :

$$
\left\{\begin{array}{ccccccc}
(1+a) x_{1} & + & x_{2} & + & x_{3} & = & a^{2}+3 a \\
x_{1} & + & (1+a) x_{2} & + & x_{3} & = & a^{3}+3 a^{2} \\
x_{1} & + & x_{2} & + & (1+a) x_{3} & = & a^{4}+3 a^{3}
\end{array}\right.
$$

4.2. Compute the rank of the following matrices
(a) $\left(\begin{array}{ccc}-1 & 1 & 3 \\ 1 & 6 & 2 \\ 4 & 2 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}0 & 1 & 1 \\ 3 & 2 & 3 \\ 2 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & -1 & 1 & 0 \\ 3 & 2 & 1 & 1 \\ 4 & 0 & 2 & -1\end{array}\right)$
(d) $\left(\begin{array}{ccc}2 & 0 & 3 \\ 2 & 1 & 1 \\ 3 & 0 & -1 \\ 0 & 1 & 0\end{array}\right)$
4.3. Are the following matrices invertible? If yes, compute the inverses.
(a) $\left(\begin{array}{lll}1 & 2 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0\end{array}\right)$
(b) $\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 1 & 3 \\ 4 & 3 & 5\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 0 & 1 \\ 3 & 3 & 1 \\ 4 & 0 & 2\end{array}\right)$
(d) $\left(\begin{array}{cccc}2 & 1 & 3 & 0 \\ 0 & 1 & -2 & 1 \\ 3 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$
4.4. Let $A, B \in \mathrm{M}_{m \times n}$, and assume that the homogeneous systems $A x=0$ and $B x=0$ have the same set of solutions. Show that A can be transformed into B by elementary row transformations.
4.5. Compute determinants of the following matrices using the definition of determinant only:

$$
\text { (a) }\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) \quad(b)\left(\begin{array}{ccccc}
0 & 0 & 1 & -1 & 0 \\
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 \\
1 & 1 & 0 & 0 & 0
\end{array}\right)
$$

4.6. (a) Show that if A is an invertible matrix, then A^{n} is also invertible for any positive integer n.
(b) Is it true that if A^{n} is invertible for some positive integer n then A is invertible?
(c) Find matrices $A \in \mathrm{M}_{n \times m}$ and $B \in \mathrm{M}_{m \times n}$ such that $A B=I$, but $B A \neq I$.
4.7. (\star) Let $\operatorname{dim} V=n$, and let $C \subset \operatorname{End}(V)$ be a finite set such that every $f \in \operatorname{End}(V)$ is a linear combination of products of elements of C. What is the minimal possible number of elements of C ?

