Linear Algebra I, Homework 5

Due Date: Friday, October 21, in class.

Problems marked (\star) are bonus ones.
5.1. Compute determinants of the following matrices:
(a) $\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6\end{array}\right)$
(b) $\left(\begin{array}{cccccc}x & y & 0 & \ldots & 0 & 0 \\ 0 & x & y & \ldots & 0 & 0 \\ \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & x & y \\ y & 0 & 0 & \ldots & 0 & x\end{array}\right)$
(c) $\left(\begin{array}{cccccc}x & y & y & \cdots & y & y \\ y & x & y & \cdots & y & y \\ y & y & x & \cdots & y & y \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ y & y & y & \cdots & y & x\end{array}\right)$
5.2. Let $A \in \mathrm{M}_{n}(\mathbb{C})$, and let $a_{i j}=-a_{j i}$ for all i, j (i.e., A is skew-symmetric).
(a) Show that if n is odd then $\operatorname{det} A=0$.
(b) Let n be even. Choose arbitrary complex number c, and define a matrix B by $b_{i j}=a_{i j}+c$. Show that $\operatorname{det} B=\operatorname{det} A$.
5.3. Let A be skew-symmetric with $a_{i i+1}=1, a_{i j}=0$ if $|i-j| \neq 1$. Compute $\operatorname{det} A$.
5.4. For $A \in \mathrm{M}_{n}$ define B by $b_{i j}=(-1)^{i+j} a_{i j}$. Show that $\operatorname{det} A=\operatorname{det} B$.
5.5. Let matrix A be composed of blocks:

$$
A=\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where B amd D are square matrices. Show that $\operatorname{det} A=\operatorname{det} B \operatorname{det} D$.
5.6. Let $A \in \mathrm{M}_{n}$ be a non-degenerate matrix with integer entries. Show that A^{-1} is also integer if and only if $\operatorname{det} A= \pm 1$.
5.7. Let $A x=b$ be a system of linear equations, denote by A_{i} the matrix A with i-th column substituted by vector b. Show that
(a) if $\operatorname{det} A=0$ but $\operatorname{det} A_{i} \neq 0$ for some i, then the system is incompatible (i.e., has no solutions);
(b) if $\operatorname{det} A=\operatorname{det} A_{1}=\cdots=\operatorname{det} A_{n}=0$, then the system can be either compatible or not.
5.8. (\star Let $A \in \mathrm{M}_{n}, a_{i j}=a_{i} b_{j}$ for $i \neq j$, and $a_{i i}=x_{i}$. Compute $\operatorname{det} A$.
5.9. (\star) Let $A \in \mathrm{M}_{n}, n \geq 3$. Show that the expansion of the determinant contains negative terms.

