Linear Algebra I, Homework 5

Due Date: Friday, October 21, in class.

Problems marked (\star) are bonus ones.

5.1. Compute determinants of the following matrices:

	/0	1	2	3/		$\int x$	y	0		0	0)		$\int x$	y	y		y	y	
(a)	$\begin{pmatrix} 0\\1 \end{pmatrix}$	2	$\frac{2}{3}$	$\left(\begin{array}{c} 3\\4 \end{array} \right)$		0	x	y		0	0		y	x			-	y	
	2	3	4	5	(b)			0				(c)	y	y	x	• • •	y	y	
	$\backslash 3$	4	5	6/			0		•••		y			•••	• • •	•••	•••		
	10	_	Ū	•/		$\setminus y$	0	0	•••	0	x /		$\setminus y$	y	y	•••	y	x /	

5.2. Let $A \in M_n(\mathbb{C})$, and let $a_{ij} = -a_{ji}$ for all i, j (i.e., A is *skew-symmetric*).

(a) Show that if n is odd then det A = 0.

(b) Let n be even. Choose arbitrary complex number c, and define a matrix B by $b_{ij} = a_{ij} + c$. Show that det $B = \det A$.

- **5.3.** Let A be skew-symmetric with $a_{ii+1} = 1$, $a_{ij} = 0$ if $|i j| \neq 1$. Compute det A.
- **5.4.** For $A \in M_n$ define B by $b_{ij} = (-1)^{i+j} a_{ij}$. Show that det $A = \det B$.
- **5.5.** Let matrix A be composed of blocks:

$$A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix},$$

where B and D are square matrices. Show that $\det A = \det B \det D$.

- **5.6.** Let $A \in M_n$ be a non-degenerate matrix with integer entries. Show that A^{-1} is also integer if and only if det $A = \pm 1$.
- **5.7.** Let Ax = b be a system of linear equations, denote by A_i the matrix A with *i*-th column substituted by vector b. Show that
 - (a) if det A = 0 but det $A_i \neq 0$ for some *i*, then the system is incompatible (i.e., has no solutions);
 - (b) if det $A = \det A_1 = \cdots = \det A_n = 0$, then the system can be either compatible or not.
- **5.8.** (*) Let $A \in M_n$, $a_{ij} = a_i b_j$ for $i \neq j$, and $a_{ii} = x_i$. Compute det A.
- **5.9.** (*) Let $A \in M_n$, $n \ge 3$. Show that the expansion of the determinant contains negative terms.