Linear Algebra I, Homework 6

Due Date: Friday, October 28, in class.

Problems marked (\star) are bonus ones.

6.1. Find sums and intersections of

(a) subspace of odd real functions and subspace of even real functions;

(b) subspaces V_1 and V_2 of real functions vanishing on M_1 and M_2 respectively;

 $(c)(\star)$ subspaces P_1 and P_2 of the space $\mathbb{R}[x]$ of polynomials with real coefficients that are multiples of fixed polynomials $p_1(x)$ and $p_2(x)$ respectively.

6.2. Let $A, B, C, D \in M_n$. Show that

(a) if C, D are non-degenerate then $\operatorname{rk}(CAD) = \operatorname{rk}(A)$;

(b) $\operatorname{rk}(AB) \leq \min(\operatorname{rk}(A), \operatorname{rk}(B));$

- (c) $\operatorname{rk}(A) \operatorname{rk}(B) \leq \operatorname{rk}(A + B) \leq \operatorname{rk}(A) + \operatorname{rk}(B);$
- $(\mathbf{d})(\star) \operatorname{rk}(BA) + \operatorname{rk}(AC) \le \operatorname{rk}(A) + \operatorname{rk}(BAC).$
- **6.3.** Let matrix A be composed of blocks:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix},$$

where A_{11} and A_{22} are square matrices of size m and n respectively. Let $D \in M_m$, $B \in M_{m \times n}$. Show that

- (a) det $\begin{pmatrix} DA_{11} & DA_{12} \\ A_{21} & A_{22} \end{pmatrix}$ = det $D \cdot \det A$;
- (b) det $\begin{pmatrix} A_{11} & A_{12} \\ A_{21} + BA_{11} & A_{22} + BA_{12} \end{pmatrix} = \det A$
- **6.4.** (a) Let V be the space of real polynomials vanishing in 1. Show that $\mathbb{R}[x]/V$ is isomorphic to \mathbb{R} .

(b) Show that the quotient space of the space of all real sequences modulo the subspace of sequences with zero limit is isomorphic to \mathbb{R} .

6.5. Show that there exist canonical isomorphisms between

(a) (V/U)/(W/U) and V/W if $U \subset W \subset V$;

- (b) $U/(U \cap W)$ and (U + W)/W if $U, W \subset V$.
- **6.6.** (*) Let A be a matrix. Show that rank of A is equal to minimal of the sizes of matrices B and C such that A = BC.