Linear Algebra I, Homework 6

Due Date: Friday, October 28, in class.

Problems marked (\star) are bonus ones.
6.1. Find sums and intersections of
(a) subspace of odd real functions and subspace of even real functions;
(b) subspaces V_{1} and V_{2} of real functions vanishing on M_{1} and M_{2} respectively;
$\left(\right.$ c) (\star) subspaces P_{1} and P_{2} of the space $\mathbb{R}[x]$ of polynomials with real coefficients that are multiples of fixed polynomials $p_{1}(x)$ and $p_{2}(x)$ respectively.
6.2. Let $A, B, C, D \in \mathrm{M}_{n}$. Show that
(a) if C, D are non-degenerate then $\operatorname{rk}(C A D)=\operatorname{rk}(A)$;
(b) $\operatorname{rk}(A B) \leq \min (\operatorname{rk}(A), \operatorname{rk}(B))$;
(c) $\mathrm{rk}(A)-\mathrm{rk}(B) \leq \operatorname{rk}(A+B) \leq \operatorname{rk}(A)+\operatorname{rk}(B)$;
$(\mathrm{d})(\star) \operatorname{rk}(B A)+\operatorname{rk}(A C) \leq \operatorname{rk}(A)+\operatorname{rk}(B A C)$.
6.3. Let matrix A be composed of blocks:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11} amd A_{22} are square matrices of size m and n respectively. Let $D \in \mathrm{M}_{m}, B \in \mathrm{M}_{m \times n}$. Show that
(a) $\operatorname{det}\left(\begin{array}{cc}D A_{11} & D A_{12} \\ A_{21} & A_{22}\end{array}\right)=\operatorname{det} D \cdot \operatorname{det} A$;
(b) $\operatorname{det}\left(\begin{array}{cc}A_{11} & A_{12} \\ A_{21}+B A_{11} & A_{22}+B A_{12}\end{array}\right)=\operatorname{det} A$
6.4. (a) Let V be the space of real polynomials vanishing in 1 . Show that $\mathbb{R}[x] / V$ is isomorphic to \mathbb{R}.
(b) Show that the quotient space of the space of all real sequences modulo the subspace of sequences with zero limit is isomorphic to \mathbb{R}.
6.5. Show that there exist canonical isomorphisms between
(a) $(V / U) /(W / U)$ and V / W if $U \subset W \subset V$;
(b) $U /(U \cap W)$ and $(U+W) / W$ if $U, W \subset V$.
6.6. (\star) Let A be a matrix. Show that rank of A is equal to minimal of the sizes of matrices B and C such that $A=B C$.

