Linear Algebra I, Homework 7

Due Date: Friday, November 4, in class.

Problems marked (\star) are bonus ones.
7.1. Let $U, W \subset V$. Show that
(a) $(U+W)^{\perp}=U^{\perp} \cap W^{\perp}$;
(b) $(U \cap W)^{\perp}=U^{\perp}+W^{\perp}$
7.2. Show that functionals f_{1}, \ldots, f_{n} (where $n=\operatorname{dim} V$ form a basis of V^{*} if and only if there is no nonzero vector $v \in V$ such that $f_{i}(v)=0$ for all $i=1, \ldots, n$.
7.3. Let V be the space of polynomials of degree at most n.
(a) Choose $x_{0}, \ldots, x_{n} \in \mathbb{F}$. Show that functionals f_{0}, \ldots, f_{n} defined as

$$
f_{i}(p)=p\left(x_{i}\right)
$$

form a basis of V^{*}. Find the dual basis of V.
(b) Choose $x_{0} \in \mathbb{F}$. Show that functionals f_{0}, \ldots, f_{n} defined as

$$
f_{i}(p)=p^{(i)}\left(x_{0}\right)
$$

form a basis of V^{*}. Find the dual basis of V.
7.4. (\star) Let $f_{1}, \ldots, f_{m} \in V^{*}, \operatorname{dim} V=n$. Consider a system of linear equations

$$
f_{1}(x)=b_{1}, \ldots, f_{m}(x)=b_{m}
$$

(a) Show that if the system is compatible, then there exists a solution $x=\left(x_{1}, \ldots, x_{n}\right)$, such that $x_{i}=\sum_{j} c_{i j} b_{j}$, where $c_{i j}$ do not depend on vector $b=\left(b_{1}, \ldots, b_{m}\right)$.
(b) Let $m=n, f_{i}(x)=\sum_{j=1}^{n} a_{i j} x_{j}, a_{i j} \in \mathbb{Q}$, and f_{1}, \ldots, f_{n} form a basis of V^{*}. Show that the system has a unique solution, and the numbers $c_{i j}$ (see (a)) are rational.
7.5. Find all subspaces of \mathbb{R}^{2} invariant with respect to operators given by following matrices:
(a) $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$;
(b) $\left(\begin{array}{cc}\cosh \alpha & -\sinh \alpha \\ \sinh \alpha & \cosh \alpha\end{array}\right)$;
(c) $\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$;
(d) $\left(\begin{array}{cc}\lambda_{1} & 1 \\ 0 & \lambda_{2}\end{array}\right)$

Let $f \in \operatorname{End}(V)$. The space $E_{\lambda}=\{v \in V \mid f(v)=\lambda v\}$ is called eigenspace corresponding to eigenvalue λ.
7.6. Is it true that a subspace $V_{1} \subset V$ is contained in some eigenspace if and only if every subspace $V_{2} \subset V_{1}$ is invariant?
7.7. Compute the characteristic polynomial and find the eigenvalues (with multiplicities), eigenvectors, and bases of eigenspaces for the operators given by the following matrices.
(a) $\left(\begin{array}{cc}1 & 1 \\ -1 & 3\end{array}\right)$
(b) $\left(\begin{array}{ccc}0 & 1 & -1 \\ 2 & 4 & 1 \\ 1 & 0 & 3\end{array}\right)$
(c) $\left(\begin{array}{ccc}3 & 3 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1\end{array}\right)$
(d) $\left(\begin{array}{ccc}0 & 1 & 1 \\ -4 & -4 & 0 \\ 0 & 1 & 3\end{array}\right)$

