Linear Algebra I, Homework 9

Due Date: Friday, November 25, in class.

Problems marked (\star) are bonus ones.
9.1. Find the Jordan normal form and the associated basis of the following matrices:
(a) $\left(\begin{array}{ccc}4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1\end{array}\right)$
(b) $\left(\begin{array}{ccc}4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8\end{array}\right)$
(d) $\left(\begin{array}{ccccc}1 & 1 & 1 & \ldots & 1 \\ 0 & 1 & 1 & \ldots & 1 \\ 0 & 0 & 1 & \ldots & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ 0 & 0 & 0 & \ldots & 1\end{array}\right)$
9.2. Show that Jordan normal form (JNF) of matrix $A+\lambda I$ is $J+\lambda I$, where J is JNF of A.
9.3. Let A be a Jordan block $J_{\lambda, r}$.
(a) Find JNF of A^{2}.
(b) Compute $f(A)$, where f is a polynomial.
9.4. Let J be a JNF of matrix A. Compute JNF of
(a) A^{2};
(b) $A^{-1}($ if $\operatorname{det} A \neq 0)$.
9.5. (a) Let A be a matrix of rank 1 . Show that $A^{2}=c A$ for some $c \in \mathbb{C}$.
(b) Let $f^{m}=f^{n}$ for some distinct positive integers m, n. Does this imply that f is diagonalizable?
(c) Show that for every $A \in \mathrm{M}_{n}$ there is $C \in \mathrm{M}_{n}$ such that $C^{-1} A C=A^{T}$.
9.6. Let $A \in \mathrm{M}_{2}$. Consider an operator $L_{A} \in \operatorname{End}\left(\mathrm{M}_{2}\right), L_{A}(X)=A X$. Given JNF of A, compute the JNF of L_{A}.
9.7. Compute

$$
\text { (a) }\left(\begin{array}{ll}
2 & 1 \\
3 & 0
\end{array}\right)^{15} \quad(b)\left(\begin{array}{cc}
-1 & -1 \\
4 & 3
\end{array}\right)^{20}
$$

9.8. Solve the equation

$$
X^{2}=\left(\begin{array}{cc}
3 & 1 \\
-1 & 5
\end{array}\right)
$$

9.9. (\star) Let $f \in \operatorname{End}\left(\mathbb{C}^{n}\right)$, and suppose that there is $v \in \mathbb{C}^{n}$ such that span of all vectors $f^{k}(v)$ is the whole \mathbb{C}^{n}. Find all possible JNF of f.

