Linear Algebra I, Homework 9

Due Date: Friday, November 25, in class.

Problems marked (\star) are bonus ones.

9.1. Find the Jordan normal form and the associated basis of the following matrices:

$$(a) \begin{pmatrix} 4 & 6 & 0 \\ -3 & -5 & 0 \\ -3 & -6 & 1 \end{pmatrix} \qquad (b) \begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix} \qquad (c) \begin{pmatrix} 1 & -3 & 0 & 3 \\ -2 & -6 & 0 & 13 \\ 0 & -3 & 1 & 3 \\ -1 & -4 & 0 & 8 \end{pmatrix} \qquad (d) \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

- **9.2.** Show that Jordan normal form (JNF) of matrix $A + \lambda I$ is $J + \lambda I$, where J is JNF of A.
- **9.3.** Let A be a Jordan block $J_{\lambda,r}$.
 - (a) Find JNF of A^2 .
 - (b) Compute f(A), where f is a polynomial.
- **9.4.** Let J be a JNF of matrix A. Compute JNF of (a) A^2 ; (b) A^{-1} (if det $A \neq 0$).
- 9.5. (a) Let A be a matrix of rank 1. Show that A² = cA for some c ∈ C.
 (b) Let f^m = fⁿ for some distinct positive integers m, n. Does this imply that f is diagonalizable?
 (c) Show that for every A ∈ M_n there is C ∈ M_n such that C⁻¹AC = A^T.
- **9.6.** Let $A \in M_2$. Consider an operator $L_A \in End(M_2)$, $L_A(X) = AX$. Given JNF of A, compute the JNF of L_A .
- 9.7. Compute

(a)
$$\begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}^{15}$$
 (b) $\begin{pmatrix} -1 & -1 \\ 4 & 3 \end{pmatrix}^{20}$

9.8. Solve the equation

$$X^2 = \begin{pmatrix} 3 & 1\\ -1 & 5 \end{pmatrix}$$

9.9. (*) Let $f \in \text{End}(\mathbb{C}^n)$, and suppose that there is $v \in \mathbb{C}^n$ such that span of all vectors $f^k(v)$ is the whole \mathbb{C}^n . Find all possible JNF of f.