Differential Geometry III, Homework 1 (Week 1)
 Due date for starred problems: Thursday, October 24.

Plane curves - 1

1.1. Sketch the trace of the smooth curve given by $\boldsymbol{\alpha}(u)=\left(u^{5}, u^{2}-1\right)$, and mark the singular points.
1.2. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ be a smooth curve, and let $[a, b] \subset I$ be a closed interval. For every partition $a=u_{0}<$ $u_{1}<\cdots<u_{n}=b$ consider the sum

$$
\ell_{\boldsymbol{\alpha}, P}:=\sum_{i=1}^{n}\left\|\boldsymbol{\alpha}\left(u_{i}\right)-\boldsymbol{\alpha}\left(u_{i-1}\right)\right\|
$$

where P stands for the given partition. Give a geometric interpretation of $\ell_{\boldsymbol{\alpha}, P}$. What length does $\ell_{\boldsymbol{\alpha}, P}$ measure? Now assume that the partition becomes finer, i.e., $\|P\|:=\max _{i=1, \ldots, n}\left|u_{i}-u_{i-1}\right|$ becomes smaller. What is the limit of $\ell_{\boldsymbol{\alpha}, P}$ as $\|P\| \rightarrow 0$?
1.3. (\star) An epicycloid $\boldsymbol{\alpha}$ is obtained as the locus of a point on the circumference of a circle of radius r which rolls without slipping on a circle of the same radius.
(a) Sketch $\boldsymbol{\alpha}$.
(b) Show that the epicycloid may be parametrized by

$$
\boldsymbol{\alpha}(u)=(2 r \sin u-r \sin 2 u, 2 r \cos u-r \cos 2 u), \quad u \in \mathbb{R} .
$$

Find the length of $\boldsymbol{\alpha}$ between the singular points at $u=0$ and $u=2 \pi$.
1.4. (夫) (a) Let $\boldsymbol{\alpha}(u)$ and $\boldsymbol{\beta}(u)$ be two smooth plane curves. Show that

$$
\frac{d}{d u}(\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u))=\boldsymbol{\alpha}^{\prime}(u) \cdot \boldsymbol{\beta}(u)+\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}^{\prime}(u)
$$

where $\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u)$ denotes a Euclidean dot product of vectors $\boldsymbol{\alpha}(u)$ and $\boldsymbol{\beta}(u)$.
Hint: write $\boldsymbol{\alpha}(u)=\left(\alpha_{1}(u), \alpha_{2}(u)\right), \boldsymbol{\beta}(u)=\left(\beta_{1}(u), \beta_{2}(u)\right)$ and compute everything in coordinates.
(b) Let $\boldsymbol{\alpha}(u): I \rightarrow \mathbb{R}^{2}$ be a smooth curve which does not pass through the origin. Suppose there exists $u_{0} \in I$ such that the point $\boldsymbol{\alpha}\left(u_{0}\right)$ is the closest to the origin amongst all the points of the trace of $\boldsymbol{\alpha}$. Show that $\boldsymbol{\alpha}\left(u_{0}\right)$ is orthogonal to $\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)$.
1.5. The second derivative $\boldsymbol{\alpha}^{\prime \prime}(u)$ of a smooth plane curve $\boldsymbol{\alpha}(u)$ is identically zero. What can be said about α ?
1.6. Let $\boldsymbol{\alpha}:(0, \pi) \rightarrow \mathbb{R}^{2}$ be a curve defined by

$$
\boldsymbol{\alpha}(u)=\left(\sin u, \cos u+\log \tan \frac{u}{2}\right)
$$

The trace of $\boldsymbol{\alpha}$ is called a tractrix.
(a) Sketch $\boldsymbol{\alpha}$.
(b) Show that a tangent vector at $\boldsymbol{\alpha}\left(u_{0}\right)$ can be written as

$$
\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)=\left(\cos u_{0},-\sin u_{0}+\frac{1}{\sin u_{0}}\right)
$$

Show that $\alpha(u)$ is smooth, and it is regular everywhere except $u=\pi / 2$.
(c) Write down the equation of a tangent line $l_{u_{0}}$ to the trace of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(d) Show that the distance between $\boldsymbol{\alpha}\left(u_{0}\right)$ and the intersection of $l_{u_{0}}$ with y-axis is constantly equal to 1 .

