Differential Geometry III, Homework 2 (Week 2)

Due date for starred problems: Thursday, October 24.

Plane curves - 2

2.1. The catenary is the plane curve $\boldsymbol{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $\boldsymbol{\alpha}(u)=(u, \cosh u)$. It is the curve assumed by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.
2.2. Suppose that $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ is a regular curve, but not necessarily unit speed. Write $\boldsymbol{\alpha}(u)=$ $(x(u), y(u))$. Find the formula for the curvature $\kappa(u)$ at the parameter value u in terms of the functions x and y (and their derivatives) at u.

Hint: consider the corresponding curve $\widetilde{\boldsymbol{\alpha}}$ parametrised by arc length. The curvature $\widetilde{\kappa}$ of $\widetilde{\boldsymbol{\alpha}}$ is then $\widetilde{\kappa}(s)=\widetilde{\boldsymbol{n}}(s) \cdot \widetilde{\boldsymbol{t}}^{\prime}(s)$, where $\widetilde{\boldsymbol{t}}$ and $\widetilde{\boldsymbol{n}}$ are the unit tangent and unit normal vector of $\widetilde{\boldsymbol{\alpha}}$. Use the relation $\widetilde{\boldsymbol{\alpha}}(s)=\boldsymbol{\alpha}\left(\ell^{-1}(s)\right)$, where $s=\ell(u)$ is the arc length, together with the chain rule.
2.3. (\star) Compute the curvature of tractrix (see Exercise 1.6) at $\boldsymbol{\alpha}(u)$.
2.4. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ be a smooth regular plane curve.
(a) Assume that for some $u_{0} \in I$ the normal line to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$ passes through the origin. Show that for some $\epsilon>0$ the trace $\boldsymbol{\alpha}\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ can be written in polar coordinates as

$$
\boldsymbol{\beta}(\vartheta)=(\rho(\vartheta) \cos \vartheta, \rho(\vartheta) \sin \vartheta)
$$

for an appropriate smooth function $\rho(\vartheta)$, where $\vartheta \in J$ for some interval J.
(b) Assume that all normal lines to $\boldsymbol{\alpha}$ pass through the origin. Show that the trace of $\boldsymbol{\alpha}$ is contained in a circle.
(c) Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ be given in polar coordinates by

$$
\boldsymbol{\alpha}(\vartheta)=(\rho(\vartheta) \cos \vartheta, \rho(\vartheta) \sin \vartheta), \quad \vartheta \in[a, b]
$$

Show that the length of $\boldsymbol{\alpha}$ is

$$
\int_{a}^{b} \sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} d \vartheta
$$

(d) In the assumptions of (c), show that the curvature of $\boldsymbol{\alpha}$ is

$$
\kappa(\vartheta)=\frac{2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}+\rho^{2}}{\left[\rho^{2}+\left(\rho^{\prime}\right)^{2}\right]^{3 / 2}}
$$

2.5. Find an arc length parameter for the graphs of the following functions $f, g:(0, \infty) \rightarrow \mathbb{R}$:
(a) $f(x)=a x+b, \quad a, b \in \mathbb{R}$;
$(\mathrm{b})(\star) g(x)=\frac{8}{27} x^{3 / 2}$.

