Differential Geometry III, Homework 2 (Week 2)

Due date for starred problems: Thursday, October 24.

Plane curves - 2

- **2.1.** The *catenary* is the plane curve $\boldsymbol{\alpha} : \mathbb{R} \to \mathbb{R}^2$ given by $\boldsymbol{\alpha}(u) = (u, \cosh u)$. It is the curve assumed by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.
- **2.2.** Suppose that $\alpha : I \to \mathbb{R}^2$ is a regular curve, but not necessarily unit speed. Write $\alpha(u) = (x(u), y(u))$. Find the formula for the curvature $\kappa(u)$ at the parameter value u in terms of the functions x and y (and their derivatives) at u.

Hint: consider the corresponding curve $\tilde{\alpha}$ parametrised by arc length. The curvature $\tilde{\kappa}$ of $\tilde{\alpha}$ is then $\tilde{\kappa}(s) = \tilde{n}(s) \cdot \tilde{t}'(s)$, where \tilde{t} and \tilde{n} are the unit tangent and unit normal vector of $\tilde{\alpha}$. Use the relation $\tilde{\alpha}(s) = \alpha(\ell^{-1}(s))$, where $s = \ell(u)$ is the arc length, together with the chain rule.

- **2.3.** (*) Compute the curvature of tractrix (see Exercise 1.6) at $\alpha(u)$.
- **2.4.** Let $\alpha : I \to \mathbb{R}^2$ be a smooth regular plane curve.

(a) Assume that for some $u_0 \in I$ the normal line to α at $\alpha(u_0)$ passes through the origin. Show that for some $\epsilon > 0$ the trace $\alpha(u_0 - \epsilon, u_0 + \epsilon)$ can be written in polar coordinates as

$$\boldsymbol{\beta}(\vartheta) = (\rho(\vartheta)\cos\vartheta, \rho(\vartheta)\sin\vartheta)$$

for an appropriate smooth function $\rho(\vartheta)$, where $\vartheta \in J$ for some interval J.

(b) Assume that all normal lines to α pass through the origin. Show that the trace of α is contained in a circle.

(c) Let $\boldsymbol{\alpha}: I \to \mathbb{R}^2$ be given in polar coordinates by

$$\boldsymbol{\alpha}(\vartheta) = (\rho(\vartheta)\cos\vartheta, \rho(\vartheta)\sin\vartheta), \qquad \vartheta \in [a, b]$$

Show that the length of α is

$$\int_{a}^{b} \sqrt{\rho^2 + (\rho')^2} \, d\vartheta$$

(d) In the assumptions of (c), show that the curvature of α is

$$\kappa(\vartheta) = \frac{2(\rho')^2 - \rho\rho'' + \rho^2}{[\rho^2 + (\rho')^2]^{3/2}}$$

2.5. Find an arc length parameter for the graphs of the following functions $f, g: (0, \infty) \to \mathbb{R}$:

(a) f(x) = ax + b, $a, b \in \mathbb{R}$; (b)(*) $g(x) = \frac{8}{27}x^{3/2}$.