Differential Geometry III, Homework 3 (Week 3)

Due date for starred problems: Thursday, November 7.

Evolute and involute

- **3.1.** Let α denote the catenary from Exercise 2.1. Show that
 - (a) the involute of α starting from (0,1) is the tractrix from Exercise 1.6 (with x- and y-axes exchanged and different parametrization);
 - (b) the evolute of $\boldsymbol{\alpha}$ is the curve given by

 $\boldsymbol{\beta}(u) = (u - \sinh u \cosh u, 2 \cosh u)$

(c) Find the singular points of β and give a sketch of its trace.

3.2. (*) *Parallels.* Let $\boldsymbol{\alpha}$ be a plane curve parametrized by arc length, and let d be a real number. The curve $\boldsymbol{\beta}(u) = \boldsymbol{\alpha}(u) + d\boldsymbol{n}(u)$ is called the *parallel* to $\boldsymbol{\alpha}$ at distance d.

(a) Show that β is a regular curve except for values of u for which $d = 1/\kappa(u)$, where κ is the curvature of α .

- (b) Show that the set of singular points of all the parallels (i.e., for all $d \in \mathbb{R}$) is the evolute of α .
- **3.3.** Let $\alpha(u) : I \to \mathbb{R}^2$ be a smooth regular curve. Suppose there exists $u_0 \in I$ such that the distance $||\alpha(u)||$ from the origin to the trace of α is maximal at u_0 . Show that the curvature $\kappa(u_0)$ of α at u_0 satisfies

$$|\kappa(u_0)| \ge 1/||\boldsymbol{\alpha}(u_0)||$$

3.4. Contact with circles. The points $(x, y) \in \mathbb{R}^2$ of a circle are given as solutions of the equation C(x, y) = 0 where

$$C(x,y) = (x-a)^2 + (y-b)^2 - \lambda$$

Let $\boldsymbol{\alpha} = (x(u), y(u))$ be a plane curve. Suppose that the point $\boldsymbol{\alpha}(u_0)$ is also on some circle defined by C(x, y). Then C vanishes at $(x(u_0), y(u_0))$ and the equation g(u) = 0 with

$$g(u) = C(x(u), y(u)) = (x(u) - a)^{2} + (y(u) - b)^{2} - \lambda$$

has a solution at u_0 . If u_0 is a multiple solution of the equation, with $g^{(i)}(u_0) = 0$ for i = 1, ..., k-1but $g^{(k)}(u_0) \neq 0$, we say that the curve α and the circle have k-point contact at $\alpha(u_0)$.

(a) Let a circle be tangent to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$. Show that $\boldsymbol{\alpha}$ and the circle have at least 2-point contact at $\boldsymbol{\alpha}(u_0)$.

(b) Suppose that $\kappa(u_0) \neq 0$. Show that α and the circle have at least 3-point contact at $\alpha(u_0)$ if and only if the centre of the circle is the centre of curvature of α at $\alpha(u_0)$.

(c) Show that $\boldsymbol{\alpha}$ and the circle have at least 4-point contact if and only if the centre of the circle is the centre of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$ and $\boldsymbol{\alpha}(u_0)$ is a vertex of $\boldsymbol{\alpha}$.