Durham University Pavel Tumarkin Michaelmas 2013

Differential Geometry III, Homework 4 (Week 4)

Due date for starred problems: Thursday, November 7.

Space curves - 1

4.1. Let $\alpha : I \to \mathbb{R}^3$ be a regular space curve. Show that the curvature κ and the torsion τ of α are given by

$$\kappa = rac{\|oldsymbol{lpha}' imes oldsymbol{lpha}''\|}{\|oldsymbol{lpha}'\|^3}, \qquad au = -rac{(oldsymbol{lpha}' imes oldsymbol{lpha}'') \cdot oldsymbol{lpha}'''}{\|oldsymbol{lpha}' imes oldsymbol{lpha}''\|^2}.$$

Hint: Denote the unit tangent, unit principal normal and binormal vector of $\boldsymbol{\alpha}$ by \boldsymbol{t} , \boldsymbol{n} and \boldsymbol{b} . Introduce the corresponding curve $\boldsymbol{\alpha}$ parametrized by arc length $s = \ell(u)$ (i.e., $\boldsymbol{\alpha}(\ell(u)) = \boldsymbol{\alpha}(u)$), and denote the corresponding orthonormal frame by $\boldsymbol{\tilde{t}}$, $\boldsymbol{\tilde{n}}$ and $\boldsymbol{\tilde{b}}$. You might find it useful to write $(\cdot)'$ for the derivative with respect to u and $\frac{d}{ds}$ for the derivative with respect to s, and to use the short hand notation

$$\frac{\mathrm{d}}{\mathrm{d}s} = \frac{1}{\|\boldsymbol{\alpha}'\|} (\cdot)'.$$

You may also need the fact that $(a \times b) \cdot c = (b \times c) \cdot a = (c \times a) \cdot b$ (triple product).

4.2. (\star) Find the curvature and torsion of the curve

$$\boldsymbol{\alpha}(u) = (au, bu^2, cu^3).$$

4.3. (*) Assume that $\alpha : I \to \mathbb{R}^3$ is a regular space curve parametrized by arc length.

(a) Determine all regular curves with vanishing curvature κ .

Hint: use Exercise 4.1

(b) Show that if the torsion τ of α vanishes, then the trace of α lies in a plane.

Hint: do NOT use Exercise 4.1

4.4. Assume that $\alpha(s) = (x(s), y(s), 0)$, i.e., the trace of α lies in the plane z = 0. Calculate the curvature κ of α and its torsion τ . What is the relation of the curvature κ of the space curve α and the (signed) curvature $\overline{\kappa}$ of the plane curve $\overline{\alpha} : I \to \mathbb{R}^2$ defined by $\overline{\alpha}(s) = (x(s), y(s))$ (i.e., the projection of the space curve α to the plane z = 0)?

4.5. Consider the regular curve given by

$$\boldsymbol{\alpha}(s) = \left(a\cos\frac{s}{c}, a\sin\frac{s}{c}, b\frac{s}{c}\right), \qquad s \in \mathbb{R},$$

where a, b, c > 0 and $c^2 = a^2 + b^2$. The curve α is called a *helix*.

- (a) Show that the trace of α lies on the cylinder $x^2 + y^2 = a^2$.
- (b) Show that α is parametrized by arc length.
- (c) Determine the curvature and torsion of α (and notice that they are both constant).

(d) Determine the equation of the plane through n(s) and t(s) at each point of α (this plane is called the *osculating plane*).

(e) Show that the line through $\alpha(s)$ in direction n(s) meets the axis of the cylinder orthogonally.

(f) Show that the tangent lines to α make a constant angle with the axis of the cylinder.

Remark: In fact, a helix can be characterized by (a) and (f). If we drop (a), then we obtain a *generalized helix* (see next homework). Another way how to characterize a helix is by (c), i.e., the fact that the curvature and torsion are constant. *Why?*