Differential Geometry III, Homework 4 (Week 4)

Due date for starred problems: Thursday, November 7.

Space curves - 1

4.1. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be a regular space curve. Show that the curvature κ and the torsion τ of $\boldsymbol{\alpha}$ are given by

$$
\kappa=\frac{\left\|\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right\|}{\left\|\boldsymbol{\alpha}^{\prime}\right\|^{3}}, \quad \tau=-\frac{\left(\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right) \cdot \boldsymbol{\alpha}^{\prime \prime \prime}}{\left\|\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right\|^{2}} .
$$

Hint: Denote the unit tangent, unit principal normal and binormal vector of $\boldsymbol{\alpha}$ by $\boldsymbol{t}, \boldsymbol{n}$ and \boldsymbol{b}. Introduce the corresponding curve $\widetilde{\boldsymbol{\alpha}}$ parametrized by arc length $s=\ell(u)$ (i.e., $\widetilde{\boldsymbol{\alpha}}(\ell(u))=\boldsymbol{\alpha}(u)$), and denote the corresponding orthonormal frame by $\widetilde{\boldsymbol{t}}, \widetilde{\boldsymbol{n}}$ and $\widetilde{\boldsymbol{b}}$. You might find it useful to write $(\cdot)^{\prime}$ for the derivative with respect to u and $\frac{\mathrm{d}}{\mathrm{d} s}$ for the derivative with respect to s, and to use the short hand notation

$$
\frac{\mathrm{d}}{\mathrm{~d} s}=\frac{1}{\left\|\boldsymbol{\alpha}^{\prime}\right\|}(\cdot)^{\prime}
$$

You may also need the fact that $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}=(\boldsymbol{b} \times \boldsymbol{c}) \cdot \boldsymbol{a}=(\boldsymbol{c} \times \boldsymbol{a}) \cdot \boldsymbol{b}$ (triple product).
4.2. (\star) Find the curvature and torsion of the curve

$$
\boldsymbol{\alpha}(u)=\left(a u, b u^{2}, c u^{3}\right) .
$$

4.3. (\star) Assume that $\alpha: I \rightarrow \mathbb{R}^{3}$ is a regular space curve parametrized by arc length.
(a) Determine all regular curves with vanishing curvature κ.

Hint: use Exercise 4.1
(b) Show that if the torsion τ of $\boldsymbol{\alpha}$ vanishes, then the trace of $\boldsymbol{\alpha}$ lies in a plane.

Hint: do NOT use Exercise 4.1
4.4. Assume that $\boldsymbol{\alpha}(s)=(x(s), y(s), 0)$, i.e., the trace of $\boldsymbol{\alpha}$ lies in the plane $z=0$. Calculate the curvature κ of $\boldsymbol{\alpha}$ and its torsion τ. What is the relation of the curvature κ of the space curve $\boldsymbol{\alpha}$ and the (signed) curvature $\bar{\kappa}$ of the plane curve $\overline{\boldsymbol{\alpha}}: I \rightarrow \mathbb{R}^{2}$ defined by $\overline{\boldsymbol{\alpha}}(s)=(x(s), y(s))$ (i.e., the projection of the space curve $\boldsymbol{\alpha}$ to the plane $z=0$)?
4.5. Consider the regular curve given by

$$
\boldsymbol{\alpha}(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right), \quad s \in \mathbb{R},
$$

where $a, b, c>0$ and $c^{2}=a^{2}+b^{2}$. The curve $\boldsymbol{\alpha}$ is called a helix.
(a) Show that the trace of $\boldsymbol{\alpha}$ lies on the cylinder $x^{2}+y^{2}=a^{2}$.
(b) Show that $\boldsymbol{\alpha}$ is parametrized by arc length.
(c) Determine the curvature and torsion of $\boldsymbol{\alpha}$ (and notice that they are both constant).
(d) Determine the equation of the plane through $\boldsymbol{n}(s)$ and $\boldsymbol{t}(s)$ at each point of $\boldsymbol{\alpha}$ (this plane is called the osculating plane).
(e) Show that the line through $\boldsymbol{\alpha}(s)$ in direction $\boldsymbol{n}(s)$ meets the axis of the cylinder orthogonally.
(f) Show that the tangent lines to $\boldsymbol{\alpha}$ make a constant angle with the axis of the cylinder.

Remark: In fact, a helix can be characterized by (a) and (f). If we drop (a), then we obtain a generalized helix (see next homework). Another way how to characterize a helix is by (c), i.e., the fact that the curvature and torsion are constant. Why?

