Differential Geometry III, Homework 5 (Week 5)

Due date for starred problems: Thursday, November 21.

Space curves - 2

- **5.1.** (*) A curve $\alpha : I \to \mathbb{R}^3$ is called a *(generalized) helix* if its tangent lines make a constant angle with a fixed direction in \mathbb{R}^3 . Suppose that $\tau(s) \neq 0$ for all $s \in I$.
 - (a) Prove that the curve

$$\boldsymbol{\alpha}(s) = \left(\frac{a}{c} \int_{s_0}^s \sin \vartheta(v) \, \mathrm{d}v, \frac{a}{c} \int_{s_0}^s \cos \vartheta(v) \, \mathrm{d}v, \frac{b}{c}s\right),$$

with $s_0 \in I$, $c^2 = a^2 + b^2$, $a \neq 0$, $b \neq 0$ and $\vartheta'(s) > 0$ is a (generalized) helix.

(b) Prove that $\boldsymbol{\alpha}$ is a (generalized) helix if and only if κ/τ is constant.

5.2. Let α , β be regular curves in \mathbb{R}^3 such that, for each u, the principal normals $n_{\alpha}(u)$ and $n_{\beta}(u)$ are parallel. Prove that the angle between $t_{\alpha}(u)$ and $t_{\beta}(u)$ is independent of u. Prove also that if the line through $\alpha(u)$ in direction $n_{\alpha(u)}$ coincides with the line through $\beta(u)$ in direction $n_{\beta(u)}$ then

$$\boldsymbol{\beta}(u) = \boldsymbol{\alpha}(u) + r\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$$

for some real number r.

5.3. (*) Let α be the curve in \mathbb{R}^3 given by

$$\alpha(u) = e^u(\cos u, \sin u, 1), \qquad u \in \mathbb{R}.$$

If $0 < \lambda_0 < \lambda_1$, find the length of the segment of $\boldsymbol{\alpha}$ which lies between the planes $z = \lambda_0$ and $z = \lambda_1$. Show also that the curvature and torsion of $\boldsymbol{\alpha}$ are both inversely proportional to e^u .

5.4. Let α be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ . Show that if the trace of α lies on a sphere then

$$\frac{\tau}{\kappa} = \left(\frac{\kappa'}{\tau\kappa^2}\right)'.$$

Is the converse true?

- **5.5.** Let α be a regular curve parametrized by arc length with $\kappa > 0$ and $\tau \neq 0$. Denote by \boldsymbol{n} and \boldsymbol{b} the principal normal and the binormal of α .
 - (a) If $\boldsymbol{\alpha}$ lies on a sphere of centre $\boldsymbol{c} \in \mathbb{R}^3$ and radius r > 0, show that

$$\boldsymbol{\alpha} - \boldsymbol{c} = -\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b},$$

where $\rho = 1/\kappa$ and $\sigma = -1/\tau$. Deduce that $r^2 = \rho^2 + (\rho'\sigma)^2$.

(b) Conversely, if $\rho^2 + (\rho'\sigma)^2$ has constant value r^2 and $\rho' \neq 0$, show that α lies on a sphere of radius r.

Hint: Show that the curve $\alpha + \rho n + \rho' \sigma b$ is constant.