Differential Geometry III, Homework 6 (Week 6)
 Due date for starred problems: Thursday, November 21.

Surfaces - 1

6.1. Let $U \subset \mathbb{R}^{2}$ be an open set. Show that the set

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=0 \text { and }(x, y) \in U\right\}
$$

is a regular surface.

6.2. (\star) Stereographic projection

Let $S^{2}(1)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ be a 2-dimensional unit sphere. For $(u, v) \in \mathbb{R}^{2}$, let $\boldsymbol{x}(u, v)$ be the point of intersection of the line in \mathbb{R}^{3} through $(u, v, 0)$ and $(0,0,1)$ with $S^{2}(1)$ (different from $(0,0,1)$).
(a) Find an explicit formula for $\boldsymbol{x}(u, v)$.
(b) Let P be the plane given by $\{z=1\}$, and for $(x, y, z) \in \mathbb{R}^{3} \backslash P$, let $\boldsymbol{F}(x, y, z) \in \mathbb{R}^{2}$ be such that $(\boldsymbol{F}(x, y, z), 0) \in \mathbb{R}^{3}$ is the intersection with the (x, y)-plane of the line through $(0,0,1)$ and (x, y, z). Show that

$$
\boldsymbol{F}(x, y, z)=\frac{1}{1-z}(x, y) .
$$

(c) Show that $\boldsymbol{F} \circ \boldsymbol{x}=\mathrm{id}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and deduce that \boldsymbol{x} is a local parametrization of $S^{2}(1) \backslash\{(0,0,1)\}$.
6.3. Show that each of the following is a surface:
(a) a cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$;
(b) a two-sheet hyperboloid given by $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}-z^{2}=-1\right\}$.

In each case find a covering of the surface by coordinate neighborhoods and give a sketch of the surface indicating the coordinate neighbourhoods you have used.
6.4. For $a, b>0$, let

$$
S:=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, z=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}\right.\right\} .
$$

Show that S is a surface and show that at each point $p \in S$ there are two straight lines passing through p and lying in S (i. e. S is a doubly ruled surface).
6.5. Let S be the surface in \mathbb{R}^{3} defined by $z=x^{2}-y^{2}$. Show that

$$
\boldsymbol{x}(u, v)=(u+\cosh v, u+\sinh v, 1+2 u(\cosh v-\sinh v)), \quad u, v \in \mathbb{R},
$$

is a local parametrization of S.
6.6. Show that
(a) the cone $\left\{x^{2}+y^{2}-z^{2}=0\right\}$ is not a regular surface;
(b) the one-sheet cone $\left\{x^{2}+y^{2}-z^{2}=0, z \geq 0\right\}$ is not a regular surface.

Hint: in (b) you need to prove that for every parametrization of the neighborhood of the origin the regularity condition fails.

