Differential Geometry III, Homework 7 (Week 7)

Due date for starred problems: Thursday, December 5.

Surfaces - 2

7.1. (\star) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a curve $\boldsymbol{\alpha}(v) \subset S$ and a curve $\boldsymbol{w}(v)$ such that $\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)$ will be a parametrization of $S)$.
(b) Now let S be an arbitrary ruled surface, and let $\boldsymbol{x}: J \times I \rightarrow \mathbb{R}^{3}, \boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)$ be a parametrization of S such that $|\boldsymbol{w}(v)|=1$ for all $v \in I$, where $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is a regular space curve and I, J are intervals in \mathbb{R}. A curve $\boldsymbol{\beta}: I \rightarrow \mathbb{R}^{3}$ lying in S is called a curve of striction if $\boldsymbol{\beta}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)=0$ for all $v \in I$. Find the curve of striction of the ruled surface in (a) with $a=b=1$ (using either one of the rulings).
Hint: You may assume $\boldsymbol{\beta}(v)=\boldsymbol{\alpha}(v)+u(v) \boldsymbol{w}(v)$.
7.2. (a) Show that the set S of $(x, y, z) \in \mathbb{R}^{3}$ fulfilling the equation $x z+y^{2}=1$ is a surface.
(b) Let $\boldsymbol{\alpha}, \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be given by

$$
\boldsymbol{\alpha}(v)=(\cos v, \sin v, \cos v) \quad \text { and } \quad \boldsymbol{w}(v)=(1+\sin v,-\cos v,-1+\sin v)
$$

Show that for all $v \in \mathbb{R}$ there are two straight lines through $\boldsymbol{\alpha}(v)$, one of which is in direction $\boldsymbol{w}(v)$, both of which lie on S. If $\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v), u \in \mathbb{R}, 0<v<2 \pi$, show that \boldsymbol{x} is a local parametrization of S.
7.3. Determine all surfaces of revolution which are also ruled surfaces.
7.4. (\star Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $f(x, y, z)=(x+y+z-1)^{2}$.
(a) Find the points at which $\operatorname{grad} f=0$.
(b) For which values of c the level set $S:=\left\{p=(x, y, z) \in \mathbb{R}^{3} \mid f(p)=c\right\}$ is a surface?
(c) What is the level set $f(p)=c$?
(d) Repeat (a) and (b) using the function $f(x, y, z)=x y z^{2}$.

7.5. Möbius band

Let S be the image of the function $f: \mathbb{R} \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3},(\varepsilon>0)$, defined by

$$
f(u, v)=\left(\left(2-v \sin \frac{u}{2}\right) \sin u,\left(2-v \sin \frac{u}{2}\right) \cos u, v \cos \frac{u}{2}\right)
$$

Show that, for ε sufficiently small, S is a surface in \mathbb{R}^{3} which may be covered by two coordinate neighborhoods. Give a sketch of the surface indicating the curves $u=$ const and $v=$ const (such curves are called coordinate curves).
7.6. Real projective plane (bonus problem)

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}$ be defined by

$$
f(x, y, z)=\left(y z, z x, x y, \frac{1}{2}\left(x^{2}-y^{2}\right), \frac{1}{2 \sqrt{3}}\left(x^{2}+y^{2}-2 z^{2}\right)\right)
$$

Show that:
(a) $f(x, y, z)=f\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ if and only if $(x, y, z)= \pm\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$;
(b) the image $S=f\left(S^{2}(1)\right)$ of the unit sphere $S^{2}(1)$ in \mathbb{R}^{3} is a surface in \mathbb{R}^{5}.

The surface S is often written as $\mathbb{R} P^{2}$ and is called the real projective plane. Note that it can be identified with the set of lines through the origin in \mathbb{R}^{3}.

