Durham University Pavel Tumarkin Michaelmas 2013

Differential Geometry III, Homework 8 (Week 8)

Due date for starred problems: Thursday, December 5.

Tangent plane

8.1. (a) Let $\boldsymbol{x} : U \to S$ be a local parametrization of a surface S in some neiborhood of a point $\boldsymbol{p} = (x_0, y_0, z_0) \in S$. Show that the tangent plane to S at \boldsymbol{p} has equation

$$\left(\frac{\partial \boldsymbol{x}}{\partial u}(\boldsymbol{p}) \times \frac{\partial \boldsymbol{x}}{\partial v}(\boldsymbol{p})\right) \cdot (\boldsymbol{x} - x_0, \boldsymbol{y} - y_0, \boldsymbol{z} - z_0) = 0$$

(b) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a smooth function, and let $c \in f(\mathbb{R}^3)$ be a regular value of f. Show that the tangent plane of the regular surface

$$S = \{(x, y, z) \mid f(x, y, z) = c\}$$

at the point $\boldsymbol{p} = (x_0, y_0, z_0) \in S$ has equation

$$\frac{\partial f}{\partial x}(\boldsymbol{p})(x-x_0) + \frac{\partial f}{\partial y}(\boldsymbol{p})(y-y_0) + \frac{\partial f}{\partial z}(\boldsymbol{p})(z-z_0) = 0$$

- **8.2.** Show that the tangent plane of one-sheeted hyperboloid $x^2 + y^2 z^2 = 1$ at point (x, y, 0) is parallel to the z-axis.
- **8.3.** (*) Let $f : \mathbb{R} \to \mathbb{R}$ be a smooth function. Define a surface S as

$$S = \{(x, y, z) \mid xf(y/x) - z = 0, \ x \neq 0\}$$

Show that all tangent planes of S pass through the origin (0, 0, 0).

- 8.4. Let $U \subset \mathbb{R}^2$ be open, and let S_1 and S_2 be two regular surfaces with parametrizations $\boldsymbol{x} : U \to S_1$ and $\boldsymbol{y} : U \to S_2$. Define a map $\boldsymbol{\varphi} = \boldsymbol{y} \circ \boldsymbol{x}^{-1} : S_1 \to S_2$. Let $\boldsymbol{p} \in S_1$, $\boldsymbol{w} \in T_{\boldsymbol{p}}S_1$, and let $\boldsymbol{\alpha} : (-\varepsilon, \varepsilon) \to S_1$ be an arbitrary regular curve in S_1 such that $\boldsymbol{p} = \boldsymbol{\alpha}(0)$ and $\boldsymbol{\alpha}'(0) = \boldsymbol{w}$. Define $\boldsymbol{\beta} : (-\varepsilon, \varepsilon) \to S_2$ as $\boldsymbol{\beta} = \boldsymbol{\varphi} \circ \boldsymbol{\alpha}$.
 - (a) Show that $\beta'(0)$ does not depend on the choice of α .
 - (b) Show that the map $d_{p}\varphi: T_{p}S_{1} \to T_{\varphi(p)}S_{2}$ defined by $d_{p}\varphi(w) = \beta'(0)$ is linear.
- 8.5. Let $\alpha : I \to \mathbb{R}^3$ be a regular curve with nonzero curvature parametrized by arc length. Recall that a *canal surface* (or *tubular surface*) S is a surface parametrized by

$$\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(u) + r(\boldsymbol{n}(u)\cos v + \boldsymbol{b}(u)\sin v),$$

where \boldsymbol{n} and \boldsymbol{b} are unit normal and binormal vectors, and r > 0 is a sufficiently small constant. Find the equation of the tangent plane to S at $\boldsymbol{x}(u, v)$. In particular, show that the tangent plane at $\boldsymbol{x}(u, v)$ is parallel to $\boldsymbol{\alpha}'(u)$.