Riemannian Geometry IV, Homework 1 (Week 1)

Due date for starred problems: Wednesday, October 22.
1.1. (\star) Let M be a smooth manifold of dimension m and N be a smooth manifold of dimension n. Show that the cartesian product

$$
M \times N:=\{(x, y) \mid x \in M, y \in N\}
$$

is a smooth manifold of dimension $m+n$.
1.2. Consider the Lemniscate of Gerono Γ, which is given as a subset of \mathbb{R}^{2} by

$$
\Gamma=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{4}-x^{2}+y^{2}=0\right\}
$$

We define open sets in Γ as intersections of Γ with open subsets of \mathbb{R}^{2}. Show that Γ does not admit a structure of a smooth 1-manifold.

1.3. Stereographic projection

Let M be the unit 2-dimensional sphere in $\mathbb{R}^{3}, N, S \in M$, where $N=(0,0,1)$ and $S=$ $(0,0,-1)$. Define $U_{N}=M \backslash\{N\}, U_{S}=M \backslash\{S\}, V_{N}=V_{S}=\mathbb{R}^{2}$. Define also the map $\varphi_{N}: U_{N} \rightarrow V_{N}$ in the following way: if $p \in U_{N}$, the image $\varphi_{N}(p)$ is the intersection of the line through N and p with the plane $\{z=0\}$. The map $\varphi_{S}: U_{S} \rightarrow V_{S}$ is defined in the same way (substitute N by S everywhere).
Compute explicitely the maps φ_{N}, φ_{S} and the transition map $\varphi_{N} \circ \varphi_{S}^{-1}$. Show that the collection $\left(U_{\alpha}, V_{\alpha}, \varphi_{\alpha}\right)_{\alpha \in\{S, N\}}$ is a smooth atlas, and M is a smooth manifold.
1.4. Introduce a structure of a smooth manifold on
(a) a 2-dimensional torus \mathbb{T}^{2} obtained from a square $[0,1] \times[0,1]$ by identification of the boundary:

$$
(0, y) \sim(1, y), \quad(x, 0) \sim(x, 1) \quad \forall x, y \in[0,1] ;
$$

(b) a Klein bottle obtained from a square $[0,1] \times[0,1]$ by identification of the boundary:

$$
(0, y) \sim(1, y), \quad(x, 0) \sim(1-x, 1) \quad \forall x, y \in[0,1] ;
$$

(c) a 3 -dimensional torus \mathbb{T}^{3} obtained from a cube $[0,1] \times[0,1] \times[0,1]$ by identification of the boundary:

$$
(0, y, z) \sim(1, y, z), \quad(x, 0, z) \sim(x, 1, z), \quad(x, y, 0) \sim(x, y, 1) \quad \forall x, y, z \in[0,1] .
$$

