Riemannian Geometry IV, Homework 10 (Week 10)

10.1. (Remark 5.19)

Let (M, g) be a Riemannian manifold, $p \in M, v \in T_{p} M$.
(a) Show that a curve $c(t)=\exp _{p}(t v)$ is a geodesic.
(b) Show that every geodesic γ through p can be written as $\gamma(t)=\exp _{p}(t w)$ for appropriate $w \in T_{p} M$.
10.2. (Lemma 5.20)

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon>0$ be small enough such that

$$
\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow B_{\varepsilon}(p) \subset M
$$

is a diffeomorphism. Let $\gamma:[0,1] \rightarrow B_{\varepsilon}(p) \backslash\{p\}$ be any curve.
Show that there exists a curve $v:[0,1] \rightarrow T_{p} M,\|v(s)\|=1$ for all $s \in[0,1]$, and a non-negative function $r:[0,1] \rightarrow \mathbb{R}_{\geq 0}$, such that

$$
\gamma(s)=\exp _{p}(r(s) v(s))
$$

10.3. (Lemma 5.14) Use the exponential map to show that any vector field $X \in \mathfrak{X}_{c}(M)$ along a smooth curve $c(t):[a, b] \rightarrow M$ is a variational vector field of some variation $F(s, t)$ (i.e., $\left.X(t)=\frac{\partial F}{\partial s}(0, t)\right)$. Show that if $X(a)=X(b)=0$ then the variation $F(s, t)$ can be chosen to be proper.

10.4. Geodesic normal coordinates

Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon>0$ such that

$$
\exp _{p}: B_{\varepsilon}\left(0_{p}\right) \rightarrow B_{\varepsilon}(p) \subset M
$$

is a diffeomorphism. Let v_{1}, \ldots, v_{n} be an orthonormal basis of $T_{p} M$. Consider a local coordinate chart of M given by $\varphi=\left(x_{1}, \ldots, x_{n}\right): B_{\varepsilon}(p) \rightarrow V=\left\{w \in \mathbb{R}^{n} \mid\|w\|<\varepsilon\right\}$ via

$$
\varphi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\exp _{p}\left(\sum_{i=1}^{n} x_{i} v_{i}\right)
$$

The coordinate functions x_{1}, \ldots, x_{n} of φ are called geodesic normal coordinates.
(a) Let $g_{i j}$ be the metric in terms of the above coordinate system φ. Show that at the point p

$$
g_{i j}(p)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

(b) Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$ be an arbitrary vector, and $c(t)=\varphi^{-1}(t w)$. Explain why $c(t)$ is a geodesic and deduce from this fact that

$$
\sum_{i, j} w_{i} w_{j} \Gamma_{i j}^{k}(c(t))=0
$$

for all $1 \leq k \leq n$.
(c) Derive from (b) that all Christoffel symbols $\Gamma_{i j}^{k}$ of the chart φ vanish at the point p (by choosing appropriate vectors $w \in \mathbb{R}^{n}$).

