Riemannian Geometry IV, Solutions 2 (Week 2)

2.1. (a) Let U be an open subset of \mathbb{R}^{n}. Show that U is a smooth manifold.
(b) Show that the general linear group $G L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det} A \neq 0\right\}$ is a smooth manifold.

Solution:

(a) The atlas consists of one chart (U, U, id).
(b) Due to (a), it is enough to show that $G L_{n}(\mathbb{R})$ is open in $M_{n}(\mathbb{R})$.

One way to do this is to show that if $\operatorname{det} A \neq 0$ then there exists $\varepsilon>0$ such that for any $B \in M_{n}(\mathbb{R})$ satisfying $\left|b_{i j}-a_{i j}\right|<\varepsilon$ for all $i, j \leq n$ the determinant of B is not zero. Indeed, a very rough estimate gives

$$
|\operatorname{det} B-\operatorname{det} A| \leq \varepsilon\left(n \max _{i, j \leq n}\left(\left|a_{i j}\right|^{n-1}\right)+O\left(\varepsilon^{2}\right)\right.
$$

which is clearly less than $|\operatorname{det} A|$ for ε small enough.
Alternatively, one can note that the function det : $M_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuos (since it is a polynomial), and $G L_{n}(\mathbb{R})$ is the preimage of an open set $\mathbb{R} \backslash\{0\}$, so it is open.

2.2. (\star)

(a) Show that the set of $n \times n$ matices real matrices with positive determinant is an open subset of $M_{n}(\mathbb{R})$.
(b) Show that the special orthogonal group $S O_{2}(\mathbb{R})=\left\{A \in M_{2}(\mathbb{R}) \mid A^{t} A=I\right.$, $\left.\operatorname{det} A=1\right\}$ is a smooth 1-manifold.

Solution:

(a) See the proof of Exercise 2.1(b).
(b) If $A=\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)$, then $A^{t} A=\left(\begin{array}{cc}x_{1}^{2}+x_{3}^{2} & x_{1} x_{2}+x_{3} x_{4} \\ x_{1} x_{2}+x_{3} x_{4} & x_{2}^{2}+x_{4}^{2}\end{array}\right)$. Define a map $f: M_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$,

$$
f(A)=\left(\begin{array}{c}
x_{1}^{2}+x_{3}^{2} \\
x_{1} x_{2}+x_{3} x_{4} \\
x_{2}^{2}+x_{4}^{2}
\end{array}\right)
$$

Then the preimage of a vector $(1,0,1)$ will consist of all orthogonal (2×2)-matrices (the group of all orthogonal $(n \times n)$-matrices is denoted by $\left.O_{n}(\mathbb{R})\right)$. Let us show that $(1,0,1)$ is a regular value of f.

The differential of f at A is

$$
D f(A)=\left(\begin{array}{cccc}
2 x_{1} & 0 & 2 x_{3} & 0 \\
x_{2} & x_{1} & x_{4} & x_{3} \\
0 & 2 x_{2} & 0 & 2 x_{4}
\end{array}\right)
$$

The first three columns form a submatrix of A with determinant $-8 x_{2} \operatorname{det} A$, the first two columns together with the forth one form a submatrix of A with determinant $8 x_{4} \operatorname{det} A$. Thus, if the rank of A is less than 3 , then either $\operatorname{det} A=0$, of $x_{2}=x_{4}=0$. Since neither of this may happen for an orthogonal matrix, we see that the rank of $D f(A)$ is 3 for $A \in O_{2}(\mathbb{R})$, and thus $(1,0,1)$ is a regular value of f, which implies that $O_{2}(\mathbb{R})$ is a smooth manifold.
Now, $\mathrm{SO}_{2}(\mathbb{R})$ is the intersection of $O_{2}(\mathbb{R})$ with the set of matrices with positive determinant, which is open due to (a). Applying Exercise 2.1(a), we see that an intersection of a smooth manifold with an open set is again a smooth manifold.
Alternatively, one could observe that any matrix from $\mathrm{SO}_{2}(\mathbb{R})$ is of the form

$$
\left(\begin{array}{cc}
\cos \vartheta & -\sin \vartheta \\
\sin \vartheta & \cos \vartheta
\end{array}\right)
$$

for $\vartheta \in[0,2 \pi$), and construct a smooth atlas explicitely (e.g., the same as was constructed for the unit circle on the first lecture).
2.3. Show that the special orthogonal group $S O_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid A^{t} A=I\right.$, $\left.\operatorname{det} A=1\right\}$ is a smooth manifold.

Solution:

The proof is very similar to the solution of the previous problem. If we denote the columns of a matrix $A \in M_{n}(\mathbb{R})$ by a_{1}, \ldots, a_{n}, then the entries of the matrix $B=A^{t} A$ are $b_{i j}=\left\langle a_{i}, a_{j}\right\rangle$, where $\langle\cdot, \cdot\rangle$ is the standard dot-product. Define $f: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{n(n+1) / 2}$ by $f_{i, j}(A)=b_{i j}, j \geq i$ (we may call coordinates of $\mathbb{R}^{n(n+1) / 2}$ by $x_{i j}, i \leq j$ for convenience). Similarly to Exercise $2.2(\mathrm{~b})$, one can check that the value ($x_{i i}=1, x_{i j}=0$) is regular, so the group $O_{2}(\mathbb{R})$ is a smooth manifold, and then use Exercise 2.2(a).

2.4. $S L_{n}(\mathbb{R})$ is a smooth manifold

(a) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. Prove Euler's relation

$$
\langle\operatorname{grad} f(x), x\rangle=m f(x)
$$

where

$$
\operatorname{grad} f(x)=\left(\frac{\partial f}{\partial x_{1}}(x), \frac{\partial f}{\partial x_{2}}(x), \ldots, \frac{\partial f}{\partial x_{k}}(x)\right)
$$

Hint: Differentiate $\lambda \mapsto f\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{k}\right)$ with respect to λ and use homogeneity.
(b) Let $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ be a homogeneous polynomial of degree $m \geq 1$. Show that every value $y \neq 0$ is a regular value of f.
(c) Use the fact that $\operatorname{det} A$ is a homogeneous polynomial in the entries of A in order to show that the special linear group $S L_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid \operatorname{det} A=1\right\}$ is a smooth manifold.

Solution:

(a) Let $g(\lambda)=f\left(\lambda x_{1}, \ldots, \lambda x_{k}\right)=\lambda^{m} f\left(x_{1}, \ldots, x_{k}\right)$. Using the chain rule, we obtain

$$
g^{\prime}(\lambda)=\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}}(\lambda x) \frac{\mathrm{d}\left(\lambda x_{i}\right)}{\mathrm{d} \lambda}=\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}}(\lambda x) x_{i} .
$$

On the other hand,

$$
g^{\prime}(\lambda)=m \lambda^{m-1} f\left(x_{1}, \ldots, x_{k}\right) .
$$

Choosing $\lambda=1$, we obtain

$$
m f(x)=\sum_{i=1}^{k} \frac{\partial f}{\partial x_{i}}(x) x_{i}=\langle\operatorname{grad} f(x), x\rangle
$$

(b) Let f be a homogeneous polynomial of degree $m \geq 1$, and let $y \neq 0$. Let $x \in f^{-1}(y)$. Using (a), we have

$$
\langle\operatorname{grad} f(x), x\rangle=m f(x)=m y \neq 0
$$

This implies that $\operatorname{grad} f(x) \neq 0$, so $D f(x): \mathbb{R}^{k} \rightarrow \mathbb{R}$ is surjective for all $x \in f^{-1}(y)$. Therefore, $y \neq 0$ is a regular value.
(c) The group $S L_{n}(\mathbb{R}) \subset M_{n}(\mathbb{R})=\mathbb{R}^{n^{2}}$ is exactly $f^{-1}(1)$, where $f(A)=\operatorname{det} A$. Now, f is a homogeneous polynomial of degree n in $\mathbb{R}^{n^{2}}$, so 1 is a regular value of f by (b). Thus, $S L_{n}(\mathbb{R})$ is a smooth manifold of dimension $n^{2}-1$.
2.5. (a) Show that a directional derivative is a derivation (i.e. check the Leibniz rule).
(b) Show that derivations form a vector space.

Solution:

Both proofs are straightforward:
(a) If $\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \gamma(0)=p$, and $f, g \in C^{\infty}(M, p)$, then

$$
\begin{aligned}
& \gamma^{\prime}(0)(f g)=(f g \circ \gamma)^{\prime}(0)=((f \circ \gamma)(g \circ \gamma))^{\prime}(0)= \\
& \quad=(f \circ \gamma)^{\prime}(0)(g \circ \gamma)(0)+(f \circ \gamma)(0)(g \circ \gamma)^{\prime}(0)=\gamma^{\prime}(0)(f) g(p)+f(p) \gamma^{\prime}(0)(g)
\end{aligned}
$$

(b) Let $\delta_{1}, \delta_{2} \in D^{\infty}(M, p), f \in C^{\infty}(M, p), \lambda_{1}, \lambda_{2} \in \mathbb{R}$. Define

$$
\left(\lambda_{1} \delta_{1}+\lambda_{2} \delta_{2}\right)(f)=\lambda_{1} \delta_{1}(f)+\lambda_{2} \delta_{2}(f)
$$

Then, if $g \in C^{\infty}(M, p)$, we have

$$
\begin{aligned}
\left(\lambda_{1} \delta_{1}+\lambda_{2} \delta_{2}\right)(f g)=\lambda_{1} \delta_{1}(f g)+\lambda_{2} \delta_{2}(f g) & = \\
=\lambda_{1} \delta_{1}(f) g(p)+\lambda_{1} f(p) \delta_{1}(g) & +\lambda_{2} \delta_{2}(f) g(p)+\lambda_{2} f(p) \delta_{2}(g)= \\
& =\left(\lambda_{1} \delta_{1}+\lambda_{2} \delta_{2}\right)(f) g(p)+f(p)\left(\lambda_{1} \delta_{1}+\lambda_{2} \delta_{2}\right)(g)
\end{aligned}
$$

so any linear combination of derivations is also a derivation. All the other parts of the definition of a vector space can be easily verified.
2.6. (\star) Let M be the group $G L_{n}(\mathbb{R})$. Define a curve $\gamma: \mathbb{R} \rightarrow M$ by $\gamma(t)=I(1+t)$. Let $f: M \rightarrow \mathbb{R}$ be a function defined by $f(A)=\operatorname{det} A$. Compute $\gamma^{\prime}(0)(f)$.

Solution:

$$
\gamma^{\prime}(0)(f)=(f \circ \gamma)^{\prime}(0)=(\operatorname{det}(I(1+t)))^{\prime}(0)=\left((1+t)^{n}\right)^{\prime}(0)=\left.n(1+t)^{n-1}\right|_{t=0}=n
$$

