Riemannian Geometry IV, Solution 3 (Week 3)

3.1. Let M be a differentiable manifold, $U_{1}, U_{2} \subset M$ open and $\varphi=\left(x_{1}, \ldots, x_{n}\right): U_{1} \rightarrow V_{1} \subset \mathbb{R}^{n}$, $\psi=\left(y_{1}, \ldots, y_{n}\right): U_{2} \rightarrow V_{2} \subset \mathbb{R}^{n}$ are two coordinate charts. Show for $p \in U_{1} \cap U_{2}$:

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\sum_{j=1}^{n} \frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) \cdot \frac{\partial}{\partial y_{j}}\right|_{p},
$$

where $y_{j} \circ \varphi^{-1}: V_{1} \rightarrow \mathbb{R}$ and $\frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}$ is the classical partial derivative in the coordinate direction x_{i} of \mathbb{R}^{n}.

Hint: Write $f \circ \varphi^{-1}$ as $f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}$ and apply the chain rule.

Solution:

We need to check that for each function $f \in C^{\infty}(M, p)$ the derivation $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ acts in the same way as the derivation $\left.\sum_{j=1}^{n} \frac{\partial y_{j}}{\partial x_{i}} \frac{\partial}{\partial y_{j}}\right|_{p}$.
We have

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}(f)=\frac{\partial\left(f \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p))=\frac{\partial}{\partial x_{i}}\left(f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}\right)(\varphi(p)) .
$$

The latter expression above is the partial derivative in coordinate direction x_{i} of the composition of the two functions $\psi \circ \varphi^{-1}: V_{1} \subset \mathbb{R}^{n} \rightarrow V_{2} \subset \mathbb{R}^{n}$ and $f \circ \psi^{-1}: V_{2} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$. The chain rule tells us that

$$
\frac{\partial}{\partial x_{i}}\left(f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}\right)(\varphi(p))=\sum_{j=1}^{n} \frac{\partial\left(f \circ \psi^{-1}\right)}{\partial y_{j}}(\psi(p)) \cdot \frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) .
$$

Here $\frac{\partial}{\partial y_{j}}$ denotes the partial derivative in the j-th coordinate direction of $V_{2} \subset \mathbb{R}^{n}$, and y_{j} in the expression $y_{j} \circ \varphi^{-1}$ denotes the j-th component function of the map ψ. So we finally end up with

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}(f)=\left.\sum_{j=1}^{n} \frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) \cdot \frac{\partial}{\partial y_{j}}\right|_{p}(f) .
$$

3.2. (\star) Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ be the standard two-dimensional sphere, let $\mathbb{R} P^{2}$ be the real projective plane and $\pi: S^{2} \rightarrow \mathbb{R} P^{2}$ be the canonical projection identifying opposite points of the sphere. Let

$$
c:(-\varepsilon, \varepsilon) \rightarrow S^{2}, \quad c(t)=(\cos t \cos (2 t), \cos t \sin (2 t), \sin t)
$$

and

$$
f: \mathbb{R} P^{2} \rightarrow \mathbb{R}, \quad f\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)\right)=\frac{\left(z_{1}+z_{2}+z_{3}\right)^{2}}{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}
$$

(a) Let $\gamma=\pi \circ c$. Calculate $\gamma^{\prime}(0)(f)$.
(b) Let (φ, U) be the following coordinate chart of $\mathbb{R} P^{2}$:
$U=\left\{\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1} \neq 0\right\} \subset \mathbb{R} P^{2}$ and

$$
\varphi: U \rightarrow \mathbb{R}^{2}, \quad \varphi\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)\right)=\left(\frac{z_{2}}{z_{1}}, \frac{z_{3}}{z_{1}}\right)
$$

Let $\varphi=\left(x_{1}, x_{2}\right)$. Express $\gamma^{\prime}(t)$ in the form

$$
\left.\alpha_{1}(t) \frac{\partial}{\partial x_{1}}\right|_{\gamma(t)}+\left.\alpha_{2}(t) \frac{\partial}{\partial x_{2}}\right|_{\gamma(t)}
$$

Solution:

We have $\gamma(t)=\mathbb{R} \cdot(\cos t \cos (2 t), \cos t \sin (2 t), \sin t)$.
(a) Since

$$
(\cos t \cos (2 t))^{2}+(\cos t \sin (2 t))^{2}+(\sin t)^{2}=1
$$

we obtain

$$
\gamma^{\prime}(0)(f)=(f \circ \gamma)^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0}(\cos t \cos (2 t)+\cos t \sin (2 t)+\sin t)^{2}=2 \cdot 3=6 .
$$

(b) Let $\left(\gamma_{1}(t), \gamma_{2}(t)\right)=\varphi \circ \gamma(t)$. Then

$$
\gamma_{1}(t)=\tan (2 t) \quad \text { and } \quad \gamma_{2}(t)=\frac{\tan t}{\cos (2 t)}
$$

This implies that

$$
\begin{aligned}
& \gamma^{\prime}(t)=\left.\gamma_{1}^{\prime}(t) \frac{\partial}{\partial x_{1}}\right|_{\gamma(t)}+\left.\gamma_{2}^{\prime}(t) \frac{\partial}{\partial x_{2}}\right|_{\gamma(t)}= \\
&=\left.2\left(1+\tan ^{2}(2 t)\right) \frac{\partial}{\partial x_{1}}\right|_{\gamma(t)}+\left.\frac{\left(1+\tan ^{2} t\right) \cos (2 t)+2 \tan t \sin (2 t)}{\cos ^{2}(2 t)} \frac{\partial}{\partial x_{2}}\right|_{\gamma(t)} .
\end{aligned}
$$

3.3. The 3 -sphere S^{3} sits inside 2-dimensional complex space as

$$
S^{3}=\left\{(w, z) \in \mathbb{C}^{2}:|w|^{2}+|z|^{2}=1\right\}
$$

(a) Writing $w=a+i b$ and $z=c+i d$ we can identify the tangent space to $\mathbb{C}^{2}=\mathbb{R}^{4}$ at the point $(1,0) \in \mathbb{C}^{2}$ with the span of $\partial / \partial a, \partial / \partial b, \partial / \partial c$ and $\partial / \partial d$.
In terms of this basis, what is the subspace tangent to S^{3} at $(1,0)$?
(b) The map $\pi: S^{3} \rightarrow \mathbb{C}$ given by $\pi(w, z)=z / w$ is defined away from $w=0$. Identify the kernel of

$$
D \pi: T_{(1,0)} S^{3} \rightarrow T_{0} \mathbb{C}
$$

Solution:

(a) If we write $|w|^{2}+|z|^{2}=F(w, z)=F(a, b, c, d)=a^{2}+b^{2}+c^{2}+d^{2}$ then $S^{3}=F^{-1}(1)$, the preimage of a regular value of F. Since F is constant along S^{3}, we have $D F(p) v=0$ for any $p \in S^{3}$ and $v \in T_{p} S^{3}$.
Now, $D F(1,0)=\left.(2 a, 2 b, 2 c, 2 d)\right|_{a=1, b=c=d=0}=(2,0,0,0)$, and this is zero on a 3-dimensional subspace which must coincide with the 3 -dimensional space $T_{(1,0)} S^{3}$:

$$
T_{(1,0)} S^{3}=\left\langle\frac{\partial}{\partial b}, \frac{\partial}{\partial c}, \frac{\partial}{\partial d}\right\rangle .
$$

(b) Let us write the coordinates on \mathbb{C} as $\alpha+i \beta$

For the basis vectors $\frac{\partial}{\partial b}, \frac{\partial}{\partial c}, \frac{\partial}{\partial d}$ of $T_{(1,0)} S^{3}$ we consider the curves γ_{b}, γ_{c} and γ_{d} such that the directional derivatives along these curves coincide with $\frac{\partial}{\partial b}, \frac{\partial}{\partial c}, \frac{\partial}{\partial d}$. Then we consider the image of these curves under the map π and write the directional derivatives along $\pi\left(\gamma_{b}\right), \pi\left(\gamma_{c}\right)$ and $\pi\left(\gamma_{d}\right)$ in the basis $\left\langle\frac{\partial}{\partial \alpha}, \frac{\partial}{\partial \beta}\right\rangle$.
Consider $\gamma_{d}(t)=(1, i t)$ be a path through $(1,0) \in \mathbb{C}^{2}$. Then $\gamma_{d}^{\prime}(0)=\partial / \partial d$. Now $D \pi_{(1,0)}\left(\gamma_{d}^{\prime}(0)\right)=$ $\left(\pi \circ \gamma_{d}\right)^{\prime}(0)$ and $\left(\pi \circ \gamma_{d}\right)(t)=\frac{i t}{1}=i t$ so we see that

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial d}\right)=\frac{\partial}{\partial \beta} \in T_{0} \mathbb{C}
$$

Similarly we choose $\gamma_{c}(t)=(1, t)$ and see that $\left(\pi \circ \gamma_{c}\right)(t)=\frac{t}{1}=t$, so

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial c}\right)=\frac{\partial}{\partial \alpha} \in T_{0} \mathbb{C} .
$$

Finally, take $\gamma_{b}(t)=(1+i t, 0)$, so that $\left(\pi \circ \gamma_{b}\right)(t)=\frac{0}{1+i t}=0$ and

$$
D \pi_{(1,0)}\left(\frac{\partial}{\partial b}\right)=0 \in T_{0} \mathbb{C}
$$

Hence we see that the kernel of $D \pi_{(1,0)}$ is just the 1-dimensional vector space spanned by $\frac{\partial}{\partial b}$.
3.4. (\star) Show that the tangent space of the Lie group $S O_{n}(\mathbb{R}) \subset M_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$ (see Exercise 2.3) at the identity $I \in S O_{n}(\mathbb{R})$ is given by

$$
T_{I} S O_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid A^{t}=-A\right\}
$$

i.e., the space of all skew-symmetric $n \times n$-matrices.

Hint: You may use that we have, componentwise, $(A B)^{\prime}(s)=A^{\prime}(s) B(s)+A(s) B^{\prime}(s)$ for the product of any two matrix-valued curves, and $\left(A^{t}\right)^{\prime}(s)=\left(A^{\prime}(s)\right)^{t}$.

Solution:
Let $A:(-\varepsilon, \varepsilon) \rightarrow S O_{n}(\mathbb{R})$ be a smooth curve on the smooth manifold $S O_{n}(\mathbb{R})$ with $A(0)=I$. Then we know that

$$
A(s)(A(s))^{t}=I,
$$

for all $s \in(-\varepsilon, \varepsilon)$. Differentiation gives

$$
A^{\prime}(0)(A(0))^{t}+A(0)\left(A^{\prime}(0)\right)^{t}=A^{\prime}(0) I^{t}+I\left(A^{\prime}(0)\right)^{t}=A^{\prime}(0)+\left(A^{\prime}(0)\right)^{t}=0
$$

So we conclude that

$$
T_{I} S O(n) \subset\left\{B \in M_{n}(\mathbb{R}) \mid B+B^{t}=0\right\}
$$

The right hand side is the space of all skew-symmetric $n \times n$-matrices, which is a vector space of dimension $\frac{n(n-1)}{2}$. Since $S O_{n}(\mathbb{R})$ is a differentiable manifold of dimension $\frac{n(n-1)}{2}$, its tangent space $T_{I} S O_{n}(\mathbb{R})$ is a vector space of the same dimension. Since both vector spaces have the same dimension, the above inclusion is actually an equality, i.e.,

$$
T_{I} S O_{n}(\mathbb{R})=\left\{B \in M_{n}(\mathbb{R}) \mid B+B^{t}=0\right\}
$$

