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Riemannian Geometry IV, Solution 3 (Week 3)

3.1. Let M be a differentiable manifold, U1, U2 ⊂ M open and ϕ = (x1, . . . , xn) : U1 → V1 ⊂ Rn,
ψ = (y1, . . . , yn) : U2 → V2 ⊂ Rn are two coordinate charts. Show for p ∈ U1 ∩ U2:

∂

∂xi

∣∣∣
p

=
n∑
j=1

∂(yj ◦ ϕ−1)
∂xi

(ϕ(p)) · ∂
∂yj

∣∣∣
p
,

where yj ◦ ϕ−1 : V1 → R and
∂(yj◦ϕ−1)

∂xi
is the classical partial derivative in the coordinate

direction xi of Rn.

Hint: Write f ◦ ϕ−1 as f ◦ ψ−1 ◦ ψ ◦ ϕ−1 and apply the chain rule.

Solution:

We need to check that for each function f ∈ C∞(M,p) the derivation ∂
∂xi

∣∣∣
p

acts in the same way

as the derivation
n∑
j=1

∂yj
∂xi

∂
∂yj

∣∣∣
p
.

We have
∂

∂xi

∣∣∣
p
(f) =

∂(f ◦ ϕ−1)
∂xi

(ϕ(p)) =
∂

∂xi
(f ◦ ψ−1 ◦ ψ ◦ ϕ−1)(ϕ(p)).

The latter expression above is the partial derivative in coordinate direction xi of the composition
of the two functions ψ ◦ϕ−1 : V1 ⊂ Rn → V2 ⊂ Rn and f ◦ψ−1 : V2 ⊂ Rn → R. The chain rule tells
us that

∂

∂xi
(f ◦ ψ−1 ◦ ψ ◦ ϕ−1)(ϕ(p)) =

n∑
j=1

∂(f ◦ ψ−1)
∂yj

(ψ(p)) · ∂(yj ◦ ϕ−1)
∂xi

(ϕ(p)).

Here ∂
∂yj

denotes the partial derivative in the j-th coordinate direction of V2 ⊂ Rn, and yj in the

expression yj ◦ ϕ−1 denotes the j-th component function of the map ψ. So we finally end up with

∂

∂xi

∣∣∣
p
(f) =

n∑
j=1

∂(yj ◦ ϕ−1)
∂xi

(ϕ(p)) · ∂
∂yj
|p(f).

3.2. (?) Let S2 = {x ∈ R3 | ‖x‖ = 1} be the standard two-dimensional sphere, let RP 2 be the real
projective plane and π : S2 → RP 2 be the canonical projection identifying opposite points
of the sphere. Let

c : (−ε, ε)→ S2, c(t) = (cos t cos(2t), cos t sin(2t), sin t)

and

f : RP 2 → R, f(R(z1, z2, z3)) =
(z1 + z2 + z3)

2

z21 + z22 + z23
.
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(a) Let γ = π ◦ c. Calculate γ′(0)(f).

(b) Let (ϕ,U) be the following coordinate chart of RP 2:

U = {R(z1, z2, z3) | z1 6= 0} ⊂ RP 2 and

ϕ : U → R2, ϕ(R(z1, z2, z3)) =

(
z2
z1
,
z3
z1

)
.

Let ϕ = (x1, x2). Express γ′(t) in the form

α1(t)
∂

∂x1

∣∣∣
γ(t)

+ α2(t)
∂

∂x2

∣∣∣
γ(t)
.

Solution:

We have γ(t) = R · (cos t cos(2t), cos t sin(2t), sin t).

(a) Since
(cos t cos(2t))2 + (cos t sin(2t))2 + (sin t)2 = 1,

we obtain

γ′(0)(f) = (f ◦ γ)′(0) =
d

dt

∣∣∣
t=0

(cos t cos(2t) + cos t sin(2t) + sin t)2 = 2 · 3 = 6.

(b) Let (γ1(t), γ2(t)) = ϕ ◦ γ(t). Then

γ1(t) = tan(2t) and γ2(t) =
tan t

cos(2t)
.

This implies that

γ′(t) = γ′1(t)
∂

∂x1

∣∣∣
γ(t)

+ γ′2(t)
∂

∂x2

∣∣∣
γ(t)

=

= 2(1 + tan2(2t))
∂

∂x1

∣∣∣
γ(t)

+
(1 + tan2 t) cos(2t) + 2 tan t sin(2t)

cos2(2t)

∂

∂x2

∣∣∣
γ(t)

.

3.3. The 3-sphere S3 sits inside 2-dimensional complex space as

S3 = {(w, z) ∈ C2 : |w|2 + |z|2 = 1}

(a) Writing w = a+ ib and z = c+ id we can identify the tangent space to C2 = R4 at the
point (1, 0) ∈ C2 with the span of ∂/∂a, ∂/∂b, ∂/∂c and ∂/∂d.

In terms of this basis, what is the subspace tangent to S3 at (1, 0)?

(b) The map π : S3 → C given by π(w, z) = z/w is defined away from w = 0. Identify the
kernel of

Dπ : T(1,0)S
3 → T0C.
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Solution:

(a) If we write |w|2 + |z|2 = F (w, z) = F (a, b, c, d) = a2 + b2 + c2 + d2 then S3 = F−1(1), the
preimage of a regular value of F . Since F is constant along S3, we have DF (p)v = 0 for any
p ∈ S3 and v ∈ TpS3.

Now, DF (1, 0) = (2a, 2b, 2c, 2d)|a=1,b=c=d=0 = (2, 0, 0, 0), and this is zero on a 3-dimensional
subspace which must coincide with the 3-dimensional space T(1,0)S

3:

T(1,0)S
3 =

〈
∂

∂b
,
∂

∂c
,
∂

∂d

〉
.

(b) Let us write the coordinates on C as α+ iβ

For the basis vectors ∂
∂b ,

∂
∂c ,

∂
∂d of T(1,0)S

3 we consider the curves γb, γc and γd such that the

directional derivatives along these curves coincide with ∂
∂b ,

∂
∂c ,

∂
∂d . Then we consider the image

of these curves under the map π and write the directional derivatives along π(γb), π(γc) and
π(γd) in the basis 〈 ∂∂α ,

∂
∂β 〉.

Consider γd(t) = (1, it) be a path through (1, 0) ∈ C2. Then γ′d(0) = ∂/∂d. NowDπ(1,0)(γ
′
d(0)) =

(π ◦ γd)′(0) and (π ◦ γd)(t) = it
1 = it so we see that

Dπ(1,0)

(
∂

∂d

)
=

∂

∂β
∈ T0C

Similarly we choose γc(t) = (1, t) and see that (π ◦ γc)(t) = t
1 = t, so

Dπ(1,0)

(
∂

∂c

)
=

∂

∂α
∈ T0C.

Finally, take γb(t) = (1 + it, 0), so that (π ◦ γb)(t) = 0
1+it = 0 and

Dπ(1,0)

(
∂

∂b

)
= 0 ∈ T0C

Hence we see that the kernel of Dπ(1,0) is just the 1-dimensional vector space spanned by ∂
∂b .

3.4. (?) Show that the tangent space of the Lie group SOn(R) ⊂Mn(R) ∼= Rn2
(see Exercise 2.3)

at the identity I ∈ SOn(R) is given by

TI SOn(R) = {A ∈Mn(R) | At = −A},

i.e., the space of all skew-symmetric n× n-matrices.

Hint: You may use that we have, componentwise, (AB)′(s) = A′(s)B(s) +A(s)B′(s) for the
product of any two matrix-valued curves, and (At)′(s) = (A′(s))t.

Solution:

Let A : (−ε, ε)→ SOn(R) be a smooth curve on the smooth manifold SOn(R) with A(0) = I. Then
we know that

A(s)(A(s))t = I,
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for all s ∈ (−ε, ε). Differentiation gives

A′(0)(A(0))t +A(0)(A′(0))t = A′(0)It + I(A′(0))t = A′(0) + (A′(0))t = 0.

So we conclude that
TISO(n) ⊂ {B ∈Mn(R) | B +Bt = 0}.

The right hand side is the space of all skew-symmetric n × n-matrices, which is a vector space
of dimension n(n−1)

2 . Since SOn(R) is a differentiable manifold of dimension n(n−1)
2 , its tangent

space TISOn(R) is a vector space of the same dimension. Since both vector spaces have the same
dimension, the above inclusion is actually an equality, i.e.,

TISOn(R) = {B ∈Mn(R) | B +Bt = 0}.

4


