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Riemannian Geometry IV, Solution 3 (Week 3)

3.1. Let M be a differentiable manifold, Uy, Uy C M open and ¢ = (z1,...,x,) : Uy — V; CR",
Y= (y1,...,Yn) : Uy = Vo C R™ are two coordinate charts. Show for p € Uy N Us:

9| _\~0ioe™) 0

where y; 0o~ : V3 — R and Lfl is the classical partial derivative in the coordinate
direction x; of R”

Hint: Write fop ! as foy ooy ! and apply the chain rule.

Solution:
We need to check that for each function f € C°°(M,p) the derivation 5% ) acts in the same way
as the derivation Z gzz o,
We have 5 3(f o o) 5
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The latter expression above is the partial derivative in coordinate direction x; of the composition
of the two functions o=t : Vi CR® — Vo C R” and fo1~!:Vy C R® — R. The chain rule tells

us that
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Here 8@% denotes the partial derivative in the j-th coordinate direction of Vo C R", and y; in the

expression y; o ¢~ ! denotes the j-th component function of the map 1. So we finally end up with
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3.2. (%) Let S? = {x € R? | ||z|| = 1} be the standard two-dimensional sphere, let RP? be the real
projective plane and 7 : S?> — RP? be the canonical projection identifying opposite points
of the sphere. Let

c:(—e,e) = 8% c(t) = (costcos(2t), costsin(2t),sint)

and
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(a) Let v = moc. Calculate 7/(0)(f).

(b) Let (¢,U) be the following coordinate chart of RP?:
U ={R(z1,29,23) | 21 # 0} C RP? and

2 2
o U—R,  o(R(n, ) = (—2, —3) |

Let ¢ = (x1,25). Express +/(t) in the form

Solution:
We have y(t) = R - (cost cos(2t), costsin(2t),sint).
(a) Since
(costcos(2t))? + (costsin(2t))? + (sint)? = 1,

we obtain

YO = (o' = 3]

(cost cos(2t) + costsin(2t) +sint)? = 2.3 = 6.
(b) Let (71(t),72(t)) = ¢ 0¥(t). Then

tant
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This implies that
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0 N (14 tan?t) cos(2t) + 2tantsin(2t) 0

= 2(1 + tan?(2t))
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3.3. The 3-sphere S? sits inside 2-dimensional complex space as
S?={(w,2) € C* : |wf*+|z|* =1}
(a) Writing w = a + ib and z = ¢ + id we can identify the tangent space to C*> = R* at the

point (1,0) € C? with the span of 9/da,d/db,d/dc and d/dd.
In terms of this basis, what is the subspace tangent to S® at (1,0)?

(b) The map 7 : S? — C given by 7(w, 2) = z/w is defined away from w = 0. Identify the
kernel of

D T(170)S3 — TO(C



Solution:

(a) If we write |w|? + |2]? = F(w,2) = F(a,b,c,d) = a® + b*> + ¢ + d? then S® = F~1(1), the
preimage of a regular value of F. Since F is constant along S2, we have DF(p)v = 0 for any
p €S53 and v € T,5°.
Now, DF(1,0) = (2a,2b,2¢,2d)|q=1p=c=d=0 = (2,0,0,0), and this is zero on a 3-dimensional
subspace which must coincide with the 3-dimensional space T o S3:
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(b) Let us write the coordinates on C as o + i3

For the basis vectors %, %, % of T{1,0 S3 we consider the curves v, 7. and 4 such that the

directional derivatives along these curves coincide with %, %, %. Then we consider the image

of these curves under the map = and write the directional derivatives along (%), m(7.) and
7(74) in the basis <%, %>.

Consider v4(t) = (1,it) be a path through (1,0) € C?. Then 7/;(0) = 9/dd. Now Dy 5)(7;(0)) =
(m07a)'(0) and (7 0 y4)(t) = % = it so we see that
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Similarly we choose 7c(t) = (1,t) and see that (mov.)(t) = & =1, so

0 0
D7T(1’0) <ac> == 6705 S T()(C

Finally, take v,(t) = (1 +it,0), so that (7o )(t) = % =0 and

0
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Hence we see that the kernel of Dy ¢ is just the 1-dimensional vector space spanned by %.

3.4. (x) Show that the tangent space of the Lie group SO, (R) C M, (R) = R" (see Exercise 2.3)
at the identity I € SO, (R) is given by

T; SO, (R) = {A € M,(R) | A" = — A},
i.e., the space of all skew-symmetric n x n-matrices.

Hint: You may use that we have, componentwise, (AB)'(s) = A’(s)B(s) + A(s)B’(s) for the
product of any two matrix-valued curves, and (A")'(s) = (A4'(s))".

Solution:

Let A: (—¢,e) — SO, (R) be a smooth curve on the smooth manifold SO,,(R) with A(0) = I. Then
we know that
A(s)(A(s)) =1,



for all s € (—¢,¢). Differentiation gives
H(O)(AO))" + AO)(A'(0)) = A(0)' + I(A'(0))" = A'(0) + (A'(0))! = 0.

So we conclude that
T1SO(n) C {B € M,(R) | B+ B" = 0}.

The right hand side is the space of all skew-symmetric n x n-matrices, which is a vector space
of dimension @ Since SO, (R) is a differentiable manifold of dimension @, its tangent
space 1750, (R) is a vector space of the same dimension. Since both vector spaces have the same

dimension, the above inclusion is actually an equality, i.e.,

T1SO,(R) = {B € M,(R) | B+ B' = 0}.



