Riemannian Geometry IV, Homework 3 (Week 3)

Due date for starred problems: Wednesday, November 5.
3.1. Let M be a differentiable manifold, $U_{1}, U_{2} \subset M$ open and $\varphi=\left(x_{1}, \ldots, x_{n}\right): U_{1} \rightarrow V_{1} \subset \mathbb{R}^{n}$, $\psi=\left(y_{1}, \ldots, y_{n}\right): U_{2} \rightarrow V_{2} \subset \mathbb{R}^{n}$ are two coordinate charts. Show for $p \in U_{1} \cap U_{2}$:

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\left.\sum_{j=1}^{n} \frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}(\varphi(p)) \cdot \frac{\partial}{\partial y_{j}}\right|_{p}
$$

where $y_{j} \circ \varphi^{-1}: V_{1} \rightarrow \mathbb{R}$ and $\frac{\partial\left(y_{j} \circ \varphi^{-1}\right)}{\partial x_{i}}$ is the classical partial derivative in the coordinate direction x_{i} of \mathbb{R}^{n}.

Hint: Write $f \circ \varphi^{-1}$ as $f \circ \psi^{-1} \circ \psi \circ \varphi^{-1}$ and apply the chain rule.
3.2. (\star) Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid\|x\|=1\right\}$ be the standard two-dimensional sphere, let $\mathbb{R} P^{2}$ be the real projective plane and $\pi: S^{2} \rightarrow \mathbb{R} P^{2}$ be the canonical projection identifying opposite points of the sphere. Let

$$
c:(-\varepsilon, \varepsilon) \rightarrow S^{2}, \quad c(t)=(\cos t \cos (2 t), \cos t \sin (2 t), \sin t)
$$

and

$$
f: \mathbb{R} P^{2} \rightarrow \mathbb{R}, \quad f\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)\right)=\frac{\left(z_{1}+z_{2}+z_{3}\right)^{2}}{z_{1}^{2}+z_{2}^{2}+z_{3}^{2}}
$$

(a) Let $\gamma=\pi \circ c$. Calculate $\gamma^{\prime}(0)(f)$.
(b) Let (φ, U) be the following coordinate chart of $\mathbb{R} P^{2}$:
$U=\left\{\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right) \mid z_{1} \neq 0\right\} \subset \mathbb{R} P^{2}$ and

$$
\varphi: U \rightarrow \mathbb{R}^{2}, \quad \varphi\left(\mathbb{R}\left(z_{1}, z_{2}, z_{3}\right)\right)=\left(\frac{z_{2}}{z_{1}}, \frac{z_{3}}{z_{1}}\right)
$$

Let $\varphi=\left(x_{1}, x_{2}\right)$. Express $\gamma^{\prime}(t)$ in the form

$$
\left.\alpha_{1}(t) \frac{\partial}{\partial x_{1}}\right|_{\gamma(t)}+\left.\alpha_{2}(t) \frac{\partial}{\partial x_{2}}\right|_{\gamma(t)}
$$

3.3. The 3 -sphere S^{3} sits inside 2 -dimensional complex space as

$$
S^{3}=\left\{(w, z) \in \mathbb{C}^{2}:|w|^{2}+|z|^{2}=1\right\}
$$

(a) Writing $w=a+i b$ and $z=c+i d$ we can identify the tangent space to $\mathbb{C}^{2}=\mathbb{R}^{4}$ at the point $(1,0) \in \mathbb{C}^{2}$ with the span of $\partial / \partial a, \partial / \partial b, \partial / \partial c$ and $\partial / \partial d$.
In terms of this basis, what is the subspace tangent to S^{3} at $(1,0)$?
(b) The map $\pi: S^{3} \rightarrow \mathbb{C}$ given by $\pi(w, z)=z / w$ is defined away from $w=0$. Identify the kernel of

$$
D \pi: T_{(1,0)} S^{3} \rightarrow T_{0} \mathbb{C}
$$

3.4. (\star) Show that the tangent space of the Lie group $S O_{n}(\mathbb{R}) \subset M_{n}(\mathbb{R}) \cong \mathbb{R}^{n^{2}}$ (see Exercise 2.3) at the identity $I \in S O_{n}(\mathbb{R})$ is given by

$$
T_{I} S O_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid A^{t}=-A\right\}
$$

i.e., the space of all skew-symmetric $n \times n$-matrices.

Hint: You may use that we have, componentwise, $(A B)^{\prime}(s)=A^{\prime}(s) B(s)+A(s) B^{\prime}(s)$ for the product of any two matrix-valued curves, and $\left(A^{t}\right)^{\prime}(s)=\left(A^{\prime}(s)\right)^{t}$.

