Durham University Michaelmas 2014
Pavel Tumarkin

4.1.
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4.3.

Riemannian Geometry IV, Solutions 4 (Week 4)

Let M and N be smooth manifolds. Using local coordinates, explain why T(,, o) (M xN) = T, M&T,N
forpe M and ¢ € N.

Solution:

If (U;,Vi, i), @ € I, is an atlas for M, and (U;,V;,;), j € J, is an atlas for N, then we get an atlas for
M x N by taking products (U; x U;,V; x Vj,¢; x ;) for (i,7) € I x J. It follows that if (z1,...,2,,) and
(y1,...,Yn) are local coordinates at p € M and ¢ € N, then (z1,...,Zm,y1,...,Yn) are local coordinates at
(p,q) € M x N. Hence we see that
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Let M C R™ be a smooth manifold given by the equation f(xi,...,z,) = a. Let p € M and
v € T,M. Show that the vector v = (vy,...,v,) satisfies the equation

> g =0,

i=1 O
or, equivalently, (grad f(p),v) = 0.
Solution:
Let y(t) be a curve on M such that v(0) = p and v = 4/(0). Then we have f(y1(t),...,(t)) = a. We
compute #FO®) using the chain rule:

dt t=0 ’
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Notice that as f(v(t)) = a, we also have w ’t:O = 0 which implies

;axizo'

(x) Let X be a vector field on R? defined by

0 0 0
X(x,y,z):y%—xa—y+(w+y+z)%

Let M C R? be a cylinder {(x,y,2) € R®|2% +y? =1}
(a) Show that X € X(M).

d 0
(b) Express X in terms of % and A where (¢, h) are cylindrical coordinates on M, i.e.
12

(z,y,2) = (cosp,singp, h)



Solution:

(a)

Identifying T(m’y’Z)R?’ with R3, we can write that X (z,y,2) = (y, —z,7 +y + 2) € R3. The cylinder
M is a level set of a function f(x,vy,z) = x2? + 32, thus, according to Exercise 4.2, vector X (z,y, 2) is
tangent to the cylinder if and only if (grad f(x,y, z), X(x,y, z)) = 0. Since grad f(z,y,z) = (2z, 2y, 0),
we see that

(grad f(z,y,2), X (2,y,2)) = ((22,2y,0), (y, =z, 2 +y +2)) =0
Since (z,y, z) = (cos ¢, sin g, h), we have
9 _ (—sinp,cosp,0) = —sin g—&—cos 9
a(p - ¥, ¥, - (pal‘ Spayv
0 0
o = (0,0,1) = 3’

X(z,y,2)

(sin @, — cos @, cos p + sin p + h).
Thus,

0 0
X(p,h) = “op + (cosga—ksin(p—i—h)%

(*) Find vector fields X,Y € X(T?) such that {X(p),Y (p)} is a basis for T,,T? for all p € T.
Hint: you may embed the torus T? into R3 as a surface of revolution.

Find vector fields X,Y,Z € X(S%) such that {X(p),Y (p), Z(p)} is a basis for T,5% for all
pe€ S

Hint: you may use the embedding of S? described in Exercise 3.3.

Solution:

(a)

We may embed the torus into R? as
(z,9,2) = ((cos ¥ + 2) cos p, (cos I + 2) sin ¢, sin ),

where 9, ¢ € [0,27). The curves ¥ = const are parallels of the torus, the curves ¢ = const are meridians.
It is easy to see that at every point of T2 the meridian is orthogonal to the parallel, so tangent vectors
to them compose a basis of the tangent space. Thus, it is sufficient to find two non-vanishing vector
fields X and Y, where X is tangent to meridians, and Y is tangent to parallels. We may define

X(,¢) = %:(—sinﬂcosga—sinﬁsim@cosﬂ)7
Y(,p) = %:(—(cosﬁ—&—?)singa, (cos ¥ + 2) cos p,0).

The fields X and Y can also be written in terms of (z,v, 2)-coordinates in R3:

X(z,y,2) = ( — L ,vl—ZQSgn(x2+y2—4)>,

\/x2+y27 \/x2+y2
Y(xayaz) = (7y7x30)'

Embedding 52 as the unit sphere into R*, we see that choosing the vector
(=4, 2, —w,2) € Tiay,20) S € Tiayoe)R*

describes a nowhere-vanishing vector field (you should check that this vector actually lies in T{, , » )S®
by checking that it is normal to the normal direction to S® at this point).

Permuting coordinates in an appropriate way, you then should be able to find (up to an overall multipli-
cation by £1) five other nowhere-vanishing vector fields. Choosing carefully three of these, you should
then verify that the vectors at each point of S® compose a basis of the tangent space. You can do this
by checking that they are linearly independent.



