Riemannian Geometry IV, Solutions 4 (Week 4)

4.1. Let M and N be smooth manifolds. Using local coordinates, explain why $T_{(p, q)}(M \times N)=T_{p} M \oplus T_{q} N$ for $p \in M$ and $q \in N$.

Solution:

If $\left(U_{i}, V_{i}, \varphi_{i}\right), i \in I$, is an atlas for M, and $\left(U_{j}, V_{j}, \psi_{j}\right), j \in J$, is an atlas for N, then we get an atlas for $M \times N$ by taking products $\left(U_{i} \times U_{j}, V_{i} \times V_{j}, \varphi_{i} \times \psi_{j}\right)$ for $(i, j) \in I \times J$. It follows that if $\left(x_{1}, \ldots, x_{m}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$ are local coordinates at $p \in M$ and $q \in N$, then $\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)$ are local coordinates at $(p, q) \in M \times N$. Hence we see that

$$
\begin{aligned}
T_{(p, q)}(M \times N) & =\left\langle\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}, \frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}\right\rangle \\
& =\left\langle\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{m}}\right\rangle \oplus\left\langle\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{n}}\right\rangle=T_{p} M \oplus T_{q} N
\end{aligned}
$$

4.2. Let $M \subset \mathbb{R}^{n}$ be a smooth manifold given by the equation $f\left(x_{1}, \ldots, x_{n}\right)=a$. Let $p \in M$ and $v \in T_{p} M$. Show that the vector $v=\left(v_{1}, \ldots, v_{n}\right)$ satisfies the equation

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} v_{i}=0
$$

or, equivalently, $\langle\operatorname{grad} f(p), v\rangle=0$.

Solution:

Let $\gamma(t)$ be a curve on M such that $\gamma(0)=p$ and $v=\gamma^{\prime}(0)$. Then we have $f\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right)=a$. We compute $\left.\frac{d f(\gamma(t))}{d t}\right|_{t=0}$ using the chain rule:

$$
\left.\frac{d f(\gamma(t))}{d t}\right|_{t=0}=\left.\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} \frac{d \gamma_{i}(t)}{d t}\right|_{t=0}=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} v_{i}
$$

Notice that as $f(\gamma(t)) \equiv a$, we also have $\left.\frac{d f(\gamma(t))}{d t}\right|_{t=0}=0$ which implies

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}=0
$$

4.3. (\star) Let X be a vector field on \mathbb{R}^{3} defined by

$$
X(x, y, z)=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+(x+y+z) \frac{\partial}{\partial z}
$$

Let $M \subset \mathbb{R}^{3}$ be a cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$.
(a) Show that $X \in \mathfrak{X}(M)$.
(b) Express X in terms of $\frac{\partial}{\partial \varphi}$ and $\frac{\partial}{\partial h}$, where (φ, h) are cylindrical coordinates on M, i.e.

$$
(x, y, z)=(\cos \varphi, \sin \varphi, h)
$$

Solution:

(a) Identifying $T_{(x, y, z)} \mathbb{R}^{3}$ with \mathbb{R}^{3}, we can write that $X(x, y, z)=(y,-x, x+y+z) \in \mathbb{R}^{3}$. The cylinder M is a level set of a function $f(x, y, z)=x^{2}+y^{2}$, thus, according to Exercise 4.2, vector $X(x, y, z)$ is tangent to the cylinder if and only if $\langle\operatorname{grad} f(x, y, z), X(x, y, z)\rangle=0$. Since grad $f(x, y, z)=(2 x, 2 y, 0)$, we see that

$$
\langle\operatorname{grad} f(x, y, z), X(x, y, z)\rangle=\langle(2 x, 2 y, 0),(y,-x, x+y+z)\rangle=0
$$

(b) Since $(x, y, z)=(\cos \varphi, \sin \varphi, h)$, we have

$$
\begin{aligned}
\frac{\partial}{\partial \varphi} & =(-\sin \varphi, \cos \varphi, 0)=-\sin \varphi \frac{\partial}{\partial x}+\cos \varphi \frac{\partial}{\partial y} \\
\frac{\partial}{\partial h} & =(0,0,1)=\frac{\partial}{\partial z} \\
X(x, y, z) & =(\sin \varphi,-\cos \varphi, \cos \varphi+\sin \varphi+h)
\end{aligned}
$$

Thus,

$$
X(\varphi, h)=-\frac{\partial}{\partial \varphi}+(\cos \varphi+\sin \varphi+h) \frac{\partial}{\partial h}
$$

4.4. (a) (\star) Find vector fields $X, Y \in \mathfrak{X}\left(\mathbb{T}^{2}\right)$ such that $\{X(p), Y(p)\}$ is a basis for $T_{p} \mathbb{T}^{2}$ for all $p \in \mathbb{T}^{2}$.

Hint: you may embed the torus \mathbb{T}^{2} into \mathbb{R}^{3} as a surface of revolution.
(b) Find vector fields $X, Y, Z \in \mathfrak{X}\left(S^{3}\right)$ such that $\{X(p), Y(p), Z(p)\}$ is a basis for $T_{p} S^{3}$ for all $p \in S^{3}$.
Hint: you may use the embedding of S^{3} described in Exercise 3.3.

Solution:

(a) We may embed the torus into \mathbb{R}^{3} as

$$
(x, y, z)=((\cos \vartheta+2) \cos \varphi,(\cos \vartheta+2) \sin \varphi, \sin \vartheta),
$$

where $\vartheta, \varphi \in[0,2 \pi)$. The curves $\vartheta=$ const are parallels of the torus, the curves $\varphi=$ const are meridians. It is easy to see that at every point of \mathbb{T}^{2} the meridian is orthogonal to the parallel, so tangent vectors to them compose a basis of the tangent space. Thus, it is sufficient to find two non-vanishing vector fields X and Y, where X is tangent to meridians, and Y is tangent to parallels. We may define

$$
\begin{aligned}
X(\vartheta, \varphi) & =\frac{\partial}{\partial \vartheta}=(-\sin \vartheta \cos \varphi,-\sin \vartheta \sin \varphi, \cos \vartheta) \\
Y(\vartheta, \varphi) & =\frac{\partial}{\partial \varphi}=(-(\cos \vartheta+2) \sin \varphi,(\cos \vartheta+2) \cos \varphi, 0)
\end{aligned}
$$

The fields X and Y can also be written in terms of (x, y, z)-coordinates in \mathbb{R}^{3} :

$$
\begin{aligned}
X(x, y, z) & =\left(\frac{-x z}{\sqrt{x^{2}+y^{2}}}, \frac{-y z}{\sqrt{x^{2}+y^{2}}}, \sqrt{1-z^{2}} \operatorname{sgn}\left(x^{2}+y^{2}-4\right)\right) \\
Y(x, y, z) & =(-y, x, 0)
\end{aligned}
$$

(b) Embedding S^{3} as the unit sphere into \mathbb{R}^{4}, we see that choosing the vector

$$
(-y, x,-w, z) \in T_{(x, y, z, w)} S^{3} \subset T_{(x, y, z, w)} \mathbb{R}^{4}
$$

describes a nowhere-vanishing vector field (you should check that this vector actually lies in $T_{(x, y, z, w)} S^{3}$ by checking that it is normal to the normal direction to S^{3} at this point).
Permuting coordinates in an appropriate way, you then should be able to find (up to an overall multiplication by ± 1) five other nowhere-vanishing vector fields. Choosing carefully three of these, you should then verify that the vectors at each point of S^{3} compose a basis of the tangent space. You can do this by checking that they are linearly independent.

