Riemannian Geometry IV, Homework 4 (Week 4)

Due date for starred problems: Wednesday, November 5.
4.1. Let M and N be smooth manifolds. Using local coordinates, explain why $T_{(p, q)}(M \times N)=$ $T_{p} M \oplus T_{q} N$ for $p \in M$ and $q \in N$.
4.2. Let $M \subset \mathbb{R}^{n}$ be a smooth manifold given by the equation $f\left(x_{1}, \ldots, x_{n}\right)=a$. Let $p \in M$ and $v \in T_{p} M$. Show that the vector $v=\left(v_{1}, \ldots, v_{n}\right)$ satisfies the equation

$$
\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} v_{i}=0
$$

or, equivalently, $\langle\operatorname{grad} f(p), v\rangle=0$.
4.3. (\star) Let X be a vector field on \mathbb{R}^{3} defined by

$$
X(x, y, z)=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}+(x+y+z) \frac{\partial}{\partial z}
$$

Let $M \subset \mathbb{R}^{3}$ be a cylinder $\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$.
(a) Show that $X \in \mathfrak{X}(M)$.
(b) Express X in terms of $\frac{\partial}{\partial \varphi}$ and $\frac{\partial}{\partial h}$, where (φ, h) are cylindrical coordinates on M, i.e.

$$
(x, y, z)=(\cos \varphi, \sin \varphi, h)
$$

4.4. (a) (*) Find vector fields $X, Y \in \mathfrak{X}\left(\mathbb{T}^{2}\right)$ such that $\{X(p), Y(p)\}$ is a basis for $T_{p} \mathbb{T}^{2}$ for all $p \in \mathbb{T}^{2}$.
Hint: you may embed the torus \mathbb{T}^{2} into \mathbb{R}^{3} as a surface of revolution.
(b) Find vector fields $X, Y, Z \in \mathfrak{X}\left(S^{3}\right)$ such that $\{X(p), Y(p), Z(p)\}$ is a basis for $T_{p} S^{3}$ for all $p \in S^{3}$.
Hint: you may use the embedding of S^{3} described in Exercise 3.3.

