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Riemannian Geometry IV, Solutions 5 (Week 5)

5.1. (?) Let M be a smooth manifold and let X,Y, Z ∈ X(M) be vector fields on M , and let a ∈ R.
Prove the following identities concerning the Lie bracket:

(a) Linearity [X + aY, Z] = [X,Z] + a[Y, Z].

(b) Anti-symmetry [Y,X] = −[X,Y ].

(c) Jacobi identity [[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Solution:

(a) Note that Z(ag) = aZ(g) for constants a ∈ R since

∂

∂xi
(ag) = a

∂g

∂xi
,

and the same holds for linear combinations of these basis vector fields. Thus, we have

[X + aY, Z]f = (X + aY )Zf − Z(X + aY )f

= XZf + aY Zf − ZXf − aZY f = (XZf − ZXf) + a(Y Zf − ZY f)

= [X,Z]f + a[Y,Z]f.

(b) We have
[X,Y ]f = XY f − Y Xf = −(Y Xf −XY f) = −[Y,X]f

for all f ∈ C∞(M). This implies that [X,Y ] = −[Y,X].

(c) Using (b), it is enough to show that

[[X,Y ], Z] = [X, [Y,Z]] + [Y, [Z,X]].

The left hand side, applied to a function f ∈ C∞(M), is

[[X,Y ], Z]f = [X,Y ]Zf − Z[X,Y ]f = XY Zf − Y XZf − ZXY f + ZY Xf.

The right hand side, applied to the same function, is

[X, [Y,Z]]f + [Y, [Z,X]]f =

= XY Zf −XZY f − Y ZXf + ZY Xf + Y ZXf − Y XZf − ZXY f +XZY f =

= XY Zf + ZY Xf − Y XZf − ZXY f,

which is notably the same. This proves Jacobi identity.

The Hairy Ball Theorem. Let Sn ⊂ Rn+1 denote the unit n-sphere. If n is even, then there is
no continuous non-vanishing vector field X ∈ X(Sn).

This theorem tells us for example that it can not be windy everywhere at once on Earth’s surface
– at any given moment, the horizontal wind speed somewhere must be zero.

Exercise 4.4(b) shows that The Hairy Ball Theorem does not hold in odd dimensions. Moreover, it
can be generalized in the following way.

5.2. (a) Find a non-vanishing vector field on S2m+1 for arbitrary m.



(b) Construct 2m+ 1 vector fields on S2m+1 forming a basis of TpS
2m+1 at every point p ∈ S2m+1.

Solution:

(a) Embedding S2m−1 as the unit sphere inside R2m (with coordinates x1, . . . , x2m), we may take the vector
field given by

(−x2, x1,−x4, x3, . . . ,−x2m, x2m−1)

(cf. Exercise 4.4(b)).

(b) The solution is similar to one of Exercise 4.4(b). Permuting the coordinates of the field above, you may
get plenty of nowhere-vanishing fields. Then, choosing carefully 2n − 1 linearly independent (at every
point!) ones, you get required basis.

5.3. Tangent space of a matrix group as a Lie algebra
Let G ⊂Mn(R) be a matrix group and h ∈ G. We consider the tangent space ThG as a subspace of
Mn(R).

(a) Let g(s) ∈ G be a path in G with g(0) = I, and let g′(0) = A ∈ TIG ⊂ Mn(R). Let
γ(s) = g−1(s). Show that γ′(0) = −A.

(b) Let g ∈ G and A ∈ TIG ⊂ Mn(R). Show that gAg−1 ∈ TIG. (The map Adg : TIG → TIG
sending A ∈ TIG to gAg−1 ∈ TIG is called an adjoint representation of G).

(c) Show that the tangent space ThG at h ∈ G can be obtained from TIG by multiplying all the
matrices from TIG by h from the left: ThG = hTIG. Show that ThG can also be obtained from
TIG by multiplying all the matrices from TIG by h from the right.

(d) Show that for every A ∈ TIG there exists a vector field X ∈ X(G) with X(I) = A.

Hint: try to find a left-invariant field, i.e. a field satisfying X(gh) = gX(h) for g, h ∈ G.

(e) Show that if A,B ∈ TIG, then [A,B] = AB −BA is also an element of TIG.

Remark: Exercise 5.3 can be generalized to any Lie group, we will see it in the next term.

Solution:

(a) Differentiating the equality γ(s)g(s) = I at s = 0 we get γ′(0) + g′(0) = 0, which implies γ′(0) =
−g′(0) = −A.

(b) Let A = γ′(0) for some curve γ(s) in G through I at s = 0. Then gAg−1 is the tangent vector at 0 of
the curve gγ(s)g−1.

(c) Let γ(s) be a curve in G, γ(0) = I, and let h ∈ G. Then hγ(s) is also a curve in G, however hγ(0) = h,
and thus the derivative of hγ(s) at s = 0 is an element of ThG. Differentiating this curve at 0, we get

hγ′(0) =
d

ds
hγ(s)

∣∣∣∣
s=0

∈ ThG

Thus, for any A ∈ TIG we have hA ∈ ThG. Since the map A → hA is clearly injective and the
dimensions of TIG and ThG coinside, we see that ThG = hTIG. In exactly the same way we can see
that ThG = (TIG)h (note: the two maps TIG→ ThG defined by A→ hA and A→ Ah are distinct).

(d) Take A ∈ TIG. Define X = XA ∈ X(G) as X(h) = hA. According to (c), X(h) ∈ ThG, and clearly
X(h) depends on h smoothly.

(e) If A,B ∈ TIG, then [A,B] = AB−BA = [XA, XB ](I) ∈ TIG, where XA, XB ∈ X(G) are defined in (d).

5.4. (?) Let H2 be the upper half-plane model of hyperbolic 2-space. Let A =

(
a b
c d

)
∈ SL2(R) and

define the map

fA : H2 → H2, fA(z) =
az + b

cz + d
.

(a) Show that fA ◦ fB = fAB.



(b) Show that for every A ∈ SL2(R) the map fA is an isometry of H2.

Hint: show first that

Im(fA(z)) =
Im(z)

|cz + d|2
.

Solution:

(a) This can be done by an explicit computation: if A =

(
a b
c d

)
, B =

(
a′ b′

c′ d′

)
∈ SL2(R), then

fA ◦ fB(z) = fA

(
a′z + b′

c′z + d′

)
=
a
(

a′z+b′

c′z+d′

)
+ b

c
(

a′z+b′

c′z+d′

)
+ d

=

=
a(a′z + b′) + b(c′z + d′)

c(a′z + b′) + d(c′z + d′)
=

(aa′ + bc′)z + (ab′ + bd′)

(ca′ + dc′)z + (cb′ + dd′)
= fAB(z)

(b) We first follow the hint:

Im(fA(z)) = Im

(
az + b

cz + d

)
= Im

(
(az + b)(cz + d)

|cz + d|2

)
= Im

(
ac|z|2 + bd+ adz + bcz

|cz + d|2

)
= Im

(
i(ad− bc)Im(z)

|cz + d|2

)
=

Im(z)

|cz + d|2
.

Now we want to show that fA is an isometry of H2, in other words, that it preserves the Riemannian
metric. In fact, it is enough to show that it preserves the Riemannian norm ‖ · ‖2 = 〈·, ·〉.
First, we need to calculate the differential of fA. Let z(t) be a curve in H2 ⊂ C, z : R→ H2, then

DfA (z′(0)) =
d

dt

∣∣∣∣
t=0

az(t) + b

cz(t) + d

=
(ad− bc)z′(0)

(cz(0) + d)2

=
z′(0)

(cz(0) + d)2
.

Then we see that

〈DfA(z′(0)), DfA(z′(0))〉 =
1

[ImfA(z(0))]2
|z′(0)|2

|(cz(0) + d)|4

=
|z′(0)|2

[Imz(0)]2

= 〈z′(0), z′(0)〉.

Therefore, fA preserves the Riemannian norm, and hence it is an isometry.


