
Durham University
Pavel Tumarkin

Michaelmas 2014

Riemannian Geometry IV, Solutions 6 (Week 6)

6.1. Let X and Y be two vector fields on R3 defined by

X(x, y, z) = z
∂

∂x
− 2z

∂

∂y
+ (2y − x)

∂

∂z
,

Y (x, y, z) = y
∂

∂x
− x ∂

∂y
,

and let S2 sit inside R3 as the sphere of radius 1 centered at the origin.

(a) Compute the Lie bracket [X,Y ].

(b) Verify that the restrictions of the vector fields X and Y to S2 are vector fields on S2 (in other
words, are everywhere tangent to S2).

(c) Check that the restriction of [X,Y ] to S2 is also a vector field on S2.

Solution:

(a) You should get

[X,Y ] = −2z
∂

∂x
− z ∂

∂y
+ (2x+ y)

∂

∂z
.

(b) The vector X(x, y, z) ∈ T(x,y,z)R3 belongs to the space T(x,y,z)S
2 ⊂ T(x,y,z)R3 if it is orthogonal to

the normal direction to S2 at (x, y, z). The normal direction to S2 at (x, y, z) is given by the vector
n = x ∂

∂x + y ∂
∂y + z ∂

∂z . Taking the dot product we get

n ·X(x, y, z) = xz − 2yz + z(2y − x) = 0

as required. One can do similar calculations for Y and for [X,Y ].

6.2. (?) Isometry between the hyperboloid and unit ball models of the hyperbolic plane

Let W2 = {x ∈ R3 | q(x, x) = −1, x3 > 0} with q(x, y) = x1y1 + x2y2 − x3y3 be the hyperboloid
model of the hyperbolic plane. Let the Poincaré unit ball model B2 of hyperbolic 2-space sit inside
R3 as B2 = {x ∈ R3 | x3 = 0, x21 + x22 < 1}.
We define a map f : W2 → B2 by requiring that for each p ∈ W2 the points f(p) ∈ B2 and p are
collinear with the point (0, 0,−1) (i.e. f is a projection from this point to the plane {z = 0}).

(a) Calculate explicitly the maps f(X,Y, Z) for (X,Y, Z) ∈W2 and f−1(x, y, 0) for (x, y, 0) ∈ B2.
Hint: you will obtain

x =
X

Z + 1
, y =

Y

Z + 1
.

and

f−1(x, y) =

(
2x

1− x2 − y2
,

2y

1− x2 − y2
,
1 + x2 + y2

1− x2 − y2

)
.

(b) An almost global coordinate chart ϕ : U → V on W2 is given by

ϕ−1(x1, x2) = (cos(x1) sinh(x2), sin(x1) sinh(x2), cosh(x2)),

where 0 < x1 < 2π and 0 < x2 < ∞. Let ψ = ϕ ◦ f−1 be a coordinate chart on B2 with
coordinate functions y1, y2. Calculate ψ−1 explicitly.



(c) Explain why

Df(p)(
∂

∂xi
) =

∂

∂yi

for for all p ∈ U and i = 1, 2, where ∂
∂xi
∈ TpW2 and ∂

∂yi
∈ Tf(p)B2.

(d) Show that

〈 ∂
∂xi

,
∂

∂xj
〉p = 〈 ∂

∂yi
,
∂

∂yj
〉f(p)

for all p ∈ U , and i, j ∈ {1, 2}. Together with part (c), this demonstrates that f is an isometry.

Additional remark. To be precise, we need to choose two coordinate charts of the above type with
V1 = (0, 2π) × (0,∞) and V2 = (−π, π) × (0,∞), and to consider also the linear map Df(0, 0, 1) :
T(0,0,1)W2 → T0B2 to cover the whole hyperbolic plane and to fully prove that f is an isometry.

Solution:

(a) Write f(X,Y, Z) = (x, y). Then since (x, y, 0) lies on the line containing (X,Y, Z) and (0, 0,−1), we
have x/X = y/Y = 1/(Z + 1) so that

x =
X

Z + 1
, y =

Y

Z + 1
.

Similarly, one can show that

f−1(x, y) =

(
2x

1− x2 − y2
,

2y

1− x2 − y2
,

1 + x2 + y2

1− x2 − y2

)
.

(b) Since ψ = ϕ ◦ f−1, we have ψ−1 = f ◦ ϕ−1, and we know both f and ϕ−1 explicitly. So we see that

ψ−1(y1, y2) =

(
sinh y2 cos y1
1 + cosh y2

,
sinh y2 sin y1
1 + cosh y2

)
.

(c) By the definition of ψ, the map ψ ◦ f ◦ ϕ−1 between the two charts is just the identity map. So,
Df(p)( ∂

∂xi
) = ∂

∂yi
.

(d) We compute:
∂

∂x1
= (− sinx1 sinhx2, cosx1 sinhx2, 0),

∂

∂x2
= (cosx1 coshx2, sinx1 coshx2, sinhx2).

Now, using the metric defined via the form q on the hyperboloid, we see that〈
∂

∂x1
,
∂

∂x1

〉
= sinh2 x2,

〈
∂

∂x1
,
∂

∂x2

〉
= 0,〈

∂

∂x2
,
∂

∂x2

〉
= cosh2 x2 − sinh2 x2 = 1.

We also compute:
∂

∂y1
=

(
− sinh y2 sin y1

1 + cosh y2
,

sinh y2 cos y1
1 + cosh y2

)
,

∂

∂y2
=

(
cos y1

1 + cosh y2
,

sin y1
1 + cosh y2

)
.



Using the metric on the Poincaré unit ball model of hyperbolic space, we see that〈
∂

∂y1
,
∂

∂y1

〉
=

4(
1−

(
sinh y2

1+cosh y2

)2)2

sinh2 y2
(1 + cosh y2)2

=
4(
2

1+cosh y2

)2 sinh2 y2
(1 + cosh y2)2

= sinh2 y2,

and similarly 〈
∂

∂y1
,
∂

∂y2

〉
= 0,〈

∂

∂y2
,
∂

∂y2

〉
= 1.

6.3. Let H2 be the upper half-plane model of the hyperbolic 2-space.

(a) Let 0 < a < b and c : [a, b] → H2, c(t) = ti. Calculate the arc-length reparametrization
γ : [0, ln(b/a)]→ H2.

(b) Let c : [0, π]→ H2, given by

c(t) =
ai cos t+ sin t

−ai sin t+ cos t
,

for some a > 1. Calculate L(c).

Solution:

(a) We have c′(t) = i for all t ∈ [a, b]. The function l : [a, b]→ [0, L(c)] is given by

l(t) =

∫ t

a

‖c′(s)‖c(s) ds = ln
t

a
.

Thus, l : [a, b] → [0, ln(b/a)] is bijective, strictly monotone increasing and differentiable. We calculate
its inverse:

s = l(t)⇔ s = ln
t

a
⇔ es =

t

a
⇔ t = aes.

Therefore, l−1(s) = aes and the arc length parametrization of c is given by γ = c◦l−1 : [0, ln(b/a)]→ H2,

γ(s) = c(l−1(s)) = c(aes) = aesi.

(b) We have

c(t) =
(ai cos t+ sin t)(ai sin t+ cos t)

cos2 t+ a2 sin2 t
=

sin t cos t(1− a2) + ia

cos2 t+ a2 sin2 t
,

so
Im(c(t)) =

a

cos2 t+ a2 sin2 t
.

On the other hand, we have

c′(t) =
(−ai sin t+ cos t)2 + (ai cos t+ sin t)2

(−ai sin t+ cos t)2
=

1− a2

(−ai sin t+ cos t)2
.

This implies that

|c′(t)| = a2 − 1

cos2 t+ a2 sin2 t
,

and

‖c′(t)‖c(t) =
a2 − 1

cos2 t+ a2 sin2 t

cos2 t+ a2 sin2 t

a
=
a2 − 1

a
= a− 1

a
.

Thus, we obtain

L(c) =

∫ π

0

‖c′(t)‖c(t) dt = π

(
a− 1

a

)
.



6.4. We work in the upper half-plane model of the hyperbolic 2-space H2. We will show that for z1, z2 ∈
H2 the distance function is given by the formula

sinh(
1

2
d(z1, z2)) =

|z1 − z2|
2
√

Im(z1)Im(z2)
.

(a) Let z1 = iy1 and z2 = iy2 for y1, y2 ∈ R. Verify that the formula holds in this case (you may
use the formula for the distance between two such points derived in class).

(b) Let A ∈ SL2(R) and let fA(z) be the isometry of H2 considered in Exercise 5.4. Show that
both sides of the formula are invariant under fA (you may use the hint about Im(fA(z)) given
in Exercise 5.4).

(c) Finally, given two points z1, z2 ∈ H2, find an A ∈ SL2(R) such that both fA(z1) and fA(z2) lie
on the imaginary axis.

(d) Using what you know about Möbius transformations of C, explain how you would draw the
shortest path connecting two points z1, z2 ∈ H2.

Solution:

(a) In class we showed using elementary methods that the distance between z1 = iy1 and z2 = iy2 is
d(z1, z2) = ln(y1/y2) (where we assume without loss of generality that y2 > y1).

In this case, the LHS of the equation to be verified is

sinh(
1

2
d(z1, z2)) =

e
log(y1/y2)

2 − e
− log(y1/y2)

2

2

=
elog(
√
y1/y2) − elog(

√
y2/y1)

2

=

√
y1/y2 −

√
y2/y1

2
.

And the RHS is

|z1 − z2|
2
√

Im(z1)Im(z2)
=

y1 − y2
2
√
y1y2

=

√
y1/y2 −

√
y2/y1

2
,

which coincides with LHS.

(b) The LHS is preserved since isometries preserve distances (you can see this from the definition of isometry
given in terms of the Riemannian metric and the definition of distance given as an infimum of the values
of certain integrals).

The RHS requires some calculation using that

Im(fA(z)) =
Im(z)

|cz + d|2
.

We compute the RHS:

|fA(z1)− fA(z2)|
2
√

Im(fA(z1))Im(fA(z2))
=
|cz1 + d||cz2 + d|

∣∣∣(az1+bcz1+d

)
−
(
az2+b
cz2+d

)∣∣∣
2
√

Im(z1)Im(z2)

=
|(az1 + b)(cz2 + d)− (az2 + b)(cz1 + d)|

2
√

Im(z1)Im(z2)

=
|z1(ad− bc)− z2(ad− bc)|

2
√

Im(z1)Im(z2)

=
|z1 − z2|

2
√

Im(z1)Im(z2)

which was required.



(c) You can achieve this by some basic Möbius transformations. If x1, x2 are real numbers x1 6= x2, then

z 7→ az − ax2
z − x1

takes x2 to 0 and x1 to ∞, where we choose a ∈ R so that the condition detA = 1 is satisfied.

Suppose now that z1 and z2 are in the upper half-plane and lie on the unique semicircle or half-line
through x1 and x2 which meets the real axis at right angles. Then this transformation must take z1
and z2 to the upper imaginary axis, since Möbius transformations map circles and lines to circles and
lines.

(d) Möbius transformations take circles and lines to circles and lines and also preserve angles. Since a, b, c, d
are all real, the class of Möbius transformations that we deal with all preserve the real axis. Since we
know that vertical half-lines satisfy the shortest-distance property (see Example 3.14 from the lectures),
we know that the only other curves which have a chance to are semicircles meeting the real axis at right
angles. But (easy exercise!) given any two points in the upper half-plane, there is a unique semicircle
or half-line through both points that meets the real axis at right angles.


