Riemannian Geometry IV, Solutions 7 (Week 7)

7.1. Covariant derivative in \mathbb{R}^n

We define covariant derivative $\nabla_v X$ of a vector field X in the direction of vector $v \in T_p \mathbb{R}^n = \mathbb{R}^n$ at point p in \mathbb{R}^n as

$$(\nabla_v X)(p) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t}$$

Show the following properties of the covariant derivative in \mathbb{R}^n :

- (a) $\nabla_v(X+Y) = \nabla_v(X) + \nabla_v(Y)$;
- (b) $\nabla_v(fX) = v(f)X(p) + f(p)\nabla_v X$, where $f \in \mathbb{C}^{\infty}(\mathbb{R}^n)$, and v(f) denotes the derivative of f in direction v;
- (c) $\nabla_{\alpha v + \beta w} X = \alpha \nabla_v X + \beta \nabla_w X$ for $\alpha, \beta \in \mathbb{R}$;
- (d) $v(\langle X, Y \rangle) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$, where $\langle \cdot, \cdot \rangle$ denotes the Euclidean dot-product, and $\langle X, Y \rangle$ is considered as a smooth function on \mathbb{R}^n ;
- (e) $\nabla_X Y \nabla_y X = [X, Y]$, where $X, Y, \nabla_X Y, \nabla_Y X \in \mathfrak{X}(\mathbb{R}^n)$, and $(\nabla_X Y)(p)$ is defined as $(\nabla_{X(p)} Y)(p)$.

Solution:

We will check the equalities by computing in coordinates and using that

$$\nabla_v X = \sum_{i=1}^n v(a_i) \frac{\partial}{\partial x_i} \Big|_p$$

for $X = \sum_{i=1}^{n} a_i(p) \frac{\partial}{\partial x_i}$. Denote also $Y = \sum_{i=1}^{n} b_i(p) \frac{\partial}{\partial x_i}$.

- (a) use that $v(a_i + b_i)(p) = v(a_i)(p) + v(b_i)(p)$;
- (b) it is the Leibniz rule applied to each term of $\sum_{i=1}^{n} v(f \cdot a_i) \frac{\partial}{\partial x_i}$;
- (c) derivatives form a vector space;
- (d)

$$v(\langle X, Y \rangle) = v\left(\langle \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}, \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} \rangle\right) = v\left(\sum_{i=1}^{n} a_i b_i\right) =$$

$$\stackrel{\text{Leibniz rule}}{=} \sum_{i=1}^{n} (v(a_i)b_i(p) + a_i(p)v(b_i)) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle;$$

(e)
$$\nabla_X Y - \nabla_y X = \sum_{i=1}^n X(b_i) \frac{\partial}{\partial x_i} - \sum_{i=1}^n Y(a_i) \frac{\partial}{\partial x_i} = \sum_{i,j} a_j \frac{\partial b_i}{\partial x_j} \frac{\partial}{\partial x_i} - \sum_{i,j} b_j \frac{\partial a_i}{\partial x_j} \frac{\partial}{\partial x_i} = [X, Y]$$

7.2. (\star) Let \mathbb{H}^n be the upper half-space model of hyperbolic n-space,

$$\mathbb{H}^n = \{ x \in \mathbb{R}^n \mid x_n > 0 \}, \quad g(v, w) = \frac{\langle v, w \rangle}{x_n^2},$$

where $v, w \in T_x \mathbb{H}^n$, and we write g for the metric on \mathbb{H}^n identifying each tangent space canonically with \mathbb{R}^n .

Calculate all Christoffel symbols Γ_{ij}^k for the global coordinate chart given by the identity map $\varphi: \mathbb{H}^n \to \mathbb{R}^n$, $\varphi(x) = x$.

Solution:

Using the standard global coordinate chart on \mathbb{H}^n , the matrix (g_{ij}) is diagonal with all diagonal entries $g_{ii} = 1/x_n^2$. We now use the formula

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} g^{km} (g_{im,j} + g_{jm,i} - g_{ij,m}),$$

where

$$g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$$
 and $(g^{ij}) = (g_{ij})^{-1}$

Since in our case the matrix (g_{ij}) is diagonal, its inverse is also diagonal, and thus we have

$$g^{ii} = x_n^2$$

Looking at the formula for Christoffel symbols, we see that we must have k = m for any non-zero terms, and also at least one of i, j, k has to be equal to n.

More precisely, there are four cases giving potentially non-zero answers: $i = j \neq n, k = n$; $i = k \neq n, j = n$; $j = k \neq n, i = n$; i = j = k = n. Of these, the second and the third are really the same since $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Then it is a simple matter of differentiation and we see that

$$\Gamma_{nn}^n = \frac{-1}{x_n} = \Gamma_{in}^i = \Gamma_{ni}^i, \ \Gamma_{ii}^n = \frac{1}{x_n}$$

whenever $i \neq n$, with all other Christoffel symbols being 0.

7.3. (a) Calculate all Christoffel symbols Γ_{ij}^k for the unit ball model \mathbb{B}^2 of hyperbolic plane, again for the global coordinate chart given by the identity map $\varphi: \mathbb{B}^2 \to \mathbb{R}^2$, $\varphi(x) = x$. Recall the the metric is given by

$$g(v, w) = \frac{4}{(1 - ||x||^2)^2} \langle v, w \rangle$$

(b) Do the same for the unit ball model \mathbb{B}^n of hyperbolic n-space.

Solution:

(a) Parametrize the unit disc by

$$\varphi^{-1}(r,\vartheta) = (r\cos\vartheta, r\sin\vartheta), \qquad r \in (0,1), \vartheta \in (0,2\pi)$$

2

Then

$$\begin{array}{lcl} \frac{\partial}{\partial r} & = & (\cos\vartheta,\sin\vartheta), \\ \frac{\partial}{\partial\vartheta} & = & (-r\sin\vartheta,r\cos\vartheta), \end{array}$$

and thus we have

$$(g_{ij}) = \begin{pmatrix} \frac{4}{(1-r^2)^2} & 0\\ 0 & \frac{4r^2}{(1-r^2)^2} \end{pmatrix},$$

which implies

$$g_{11,1} = \frac{16r}{(1-r^2)^3}, \quad g_{22,1} = \frac{8r(1+r^2)}{(1-r^2)^3},$$

and all the others $g_{ij,k}$ equal zero.

Now we can easily compute Christoffel symbols:

$$\Gamma_{11}^2 = \Gamma_{12}^1 = \Gamma_{21}^1 = \Gamma_{22}^2 = 0,$$

and

$$\Gamma^1_{11} = \frac{2r}{1-r^2}, \quad \Gamma^2_{12} = \Gamma^2_{21} = \frac{1+r^2}{r(1-r^2)}, \quad \Gamma^1_{22} = -\frac{r(1+r^2)}{1-r^2}$$

(b) The computations are similar to ones from previous exercises, but a bit bulky. One can parametrize a unit ball by

$$\varphi^{-1}(r,\vartheta_2,\ldots,\vartheta_n) = (r\sin\vartheta_n\ldots\sin\vartheta_2,r\sin\vartheta_n\ldots\sin\vartheta_3\cos\vartheta_2,r\sin\vartheta_n\ldots\sin\vartheta_4\cos\vartheta_3,\ldots,r\cos\vartheta_n),$$

where $r \in (0,1), \vartheta_2 \in (0,2\pi), \vartheta_i \in (0,\pi)$ for i > 2. Then one can compute the metric (it will be diagonal, and g_{jj} depend on r and ϑ_i for i > j only), and then compute the Christoffel symbols.