Riemannian Geometry IV, Homework 7 (Week 7)

Due date for starred problems: Wednesday, December 3.

7.1. Covariant derivative in \mathbb{R}^{n}

We define covariant derivative $\nabla_{v} X$ of a vector field X in the direction of vector $v \in T_{p} \mathbb{R}^{n}=$ \mathbb{R}^{n} at point p in \mathbb{R}^{n} as

$$
\left(\nabla_{v} X\right)(p)=\lim _{t \rightarrow 0} \frac{X(p+t v)-X(p)}{t}
$$

Show the following properties of the covariant derivative in \mathbb{R}^{n} :
(a) $\nabla_{v}(X+Y)=\nabla_{v}(X)+\nabla_{v}(Y)$;
(b) $\nabla_{v}(f X)=v(f) X(p)+f(p) \nabla_{v} X$, where $f \in \mathbb{C}^{\infty}\left(\mathbb{R}^{n}\right)$, and $v(f)$ denotes the derivative of f in direction v;
(c) $\nabla_{\alpha v+\beta w} X=\alpha \nabla_{v} X+\beta \nabla_{w} X$ for $\alpha, \beta \in \mathbb{R}$;
(d) $v(\langle X, Y\rangle)=\left\langle\nabla_{v} X, Y\right\rangle+\left\langle X, \nabla_{v} Y\right\rangle$, where $\langle\cdot, \cdot\rangle$ denotes the Euclidean dot-product, and $\langle X, Y\rangle$ is considered as a smooth function on \mathbb{R}^{n};
(e) $\nabla_{X} Y-\nabla_{y} X=[X, Y]$, where $X, Y, \nabla_{X} Y, \nabla_{Y} X \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$, and $\left(\nabla_{X} Y\right)(p)$ is defined as $\left(\nabla_{X(p)} Y\right)(p)$.
7.2. (\star) Let \mathbb{H}^{n} be the upper half-space model of hyperbolic n-space,

$$
\mathbb{H}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{n}>0\right\}, \quad g(v, w)=\frac{\langle v, w\rangle}{x_{n}^{2}},
$$

where $v, w \in T_{x} \mathbb{H}^{n}$, and we write g for the metric on \mathbb{H}^{n} identifying each tangent space canonically with \mathbb{R}^{n}.
Calculate all Christoffel symbols $\Gamma_{i j}^{k}$ for the global coordinate chart given by the identity $\operatorname{map} \varphi: \mathbb{H}^{n} \rightarrow \mathbb{R}^{n}, \varphi(x)=x$.
7.3. (a) Calculate all Christoffel symbols $\Gamma_{i j}^{k}$ for the unit ball model \mathbb{B}^{2} of hyperbolic plane, again for the global coordinate chart given by the identity map $\varphi: \mathbb{B}^{2} \rightarrow \mathbb{R}^{2}, \varphi(x)=x$. Recall the the metric is given by

$$
g(v, w)=\frac{4}{\left(1-\|x\|^{2}\right)^{2}}\langle v, w\rangle
$$

(b) Do the same for the unit ball model \mathbb{B}^{n} of hyperbolic n-space.

