Riemannian Geometry IV, Solutions 8 (Week 8)

8.1. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere inside 3 -space, with the induced metric from the standard Euclidean metric on \mathbb{R}^{3}.
(a) (\star) Let c be the curve on S^{2} given by

$$
c(t)=\left(\frac{1}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}\right)
$$

and let $v \in T_{c(0)} S^{2}$ be given by

$$
v=(0,1,0) \in T_{c(0)} S^{2} \subset T_{c(0)} \mathbb{R}^{3}
$$

Find the unique $X \in \mathfrak{X}_{c}\left(S^{2}\right)$ that is parallel along c and $X(0)=v$.
(b) Let $\gamma_{1}, \gamma_{2}:[0, \pi] \rightarrow S^{2}$ be two curves connecting the north and south poles N and S defined by

$$
\begin{aligned}
& \gamma_{1}(t)=(0, \sin t, \cos t) \\
& \gamma_{2}(t)=(\sin t, 0, \cos t)
\end{aligned}
$$

Show that the isomorphisms of $T_{N}\left(S^{2}\right)$ and $T_{S}\left(S^{2}\right)$ given by parallel transports along γ_{1} and γ_{2} are different, i.e. find $u \in T_{N}\left(S^{2}\right)$ such that $P_{\gamma_{1}}(u) \neq P_{\gamma_{2}}(u)$.

Solution:

(a) We will compute using the following plan:

- write $X(t)=\sum a_{i}(t) \frac{\partial}{\partial x_{i}}$;
- calculate Christoffel symbols;
- use $\Gamma_{i j}^{k}$ to find the action of the covariant derivative $\frac{D}{d t}$ on X;
- write a system of ODEs using the "parallel condition";
- solve it;
- find X.

In class we already computed the Christoffel symbols for S^{2}. Recall that we gave an almost global coordinate chart

$$
\psi^{-1}:(\varphi, \vartheta) \mapsto\left(\cos \varphi \sin \vartheta, \sin \varphi \sin \vartheta_{1}, \cos \vartheta\right)
$$

where $(\varphi, \vartheta) \in(0,2 \pi) \times(0, \pi)$. We calculated that

$$
\Gamma_{11}^{2}=-\cos (\vartheta) \sin (\vartheta), \quad \Gamma_{12}^{1}=\Gamma_{21}^{1}=\cot (\vartheta)
$$

with all other Christoffel symbols equal to 0 . Now, let us consider a similar chart:

$$
\psi^{-1}:(\varphi, \vartheta) \mapsto\left(\cos \vartheta, \sin \varphi \sin \vartheta_{1}, \cos \varphi \sin \vartheta\right)
$$

i.e. we interchange coordinates x and z. Clearly, this does not affect Christoffel symbols, but gives a better equation for the curve $c(t)$: we can write

$$
c(t)=\psi^{-1}(t, \pi / 4)
$$

so that

$$
c^{\prime}(t)=\frac{\partial}{\partial \varphi}
$$

Now we want to translate the "parallel condition" into a system of ODEs. So let $X(t) \in T_{c(t)} S^{2}$ be a vector field along the curve c. We can write

$$
X(t)=a(t) \frac{\partial}{\partial \varphi}+b(t) \frac{\partial}{\partial \vartheta}
$$

for some smooth functions a and b.
The parallel condition says that

$$
\frac{D}{d t} X(t)=\frac{D}{d t}\left(a(t) \frac{\partial}{\partial \varphi}+b(t) \frac{\partial}{\partial \vartheta}\right)=0
$$

and using the properties of $\frac{D}{d t}$ this is the same as requiring

$$
a(t)\left(\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}\right)+a^{\prime}(t) \frac{\partial}{\partial \varphi}+b(t)\left(\nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \vartheta}\right)+b^{\prime}(t) \frac{\partial}{\partial \vartheta}=0
$$

Here we need the Christoffel symbols. They tell us that

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \vartheta}=\cot (\vartheta) \frac{\partial}{\partial \varphi} \\
& \nabla_{\frac{\partial}{\partial \varphi}} \frac{\partial}{\partial \varphi}=-\cos (\vartheta) \sin (\vartheta) \frac{\partial}{\partial \vartheta}
\end{aligned}
$$

Furthermore, since $\vartheta=\pi / 4$ is constant on the curve c, our parallel condition becomes

$$
-\frac{1}{2} a(t) \frac{\partial}{\partial \vartheta}+a^{\prime}(t) \frac{\partial}{\partial \varphi}+b(t) \frac{\partial}{\partial \varphi}+b^{\prime}(t) \frac{\partial}{\partial \vartheta}=0
$$

Since $\left\{\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right\}$ form a basis of the tangent space at each point along c, we have

$$
b^{\prime}(t)-\frac{1}{2} a(t)=0, \quad a^{\prime}(t)+b(t)=0
$$

Solving this (and you definitely know how to do it), we get:

$$
a(t)=A \cos (t / \sqrt{2})+B \sin (t / \sqrt{2}), \quad b(t)=A \sqrt{2} \sin (t / \sqrt{2})-B \sqrt{2} \cos (t \sqrt{2})
$$

for arbitrary constants A and B. In our case we are told what $X(0)$ is, and that provides an initial condition so that we can find A and B. We have

$$
X(0)=v=\sqrt{2} c^{\prime}(0)=\sqrt{2} \frac{\partial}{\partial \varphi}
$$

so we see that $A=\sqrt{2}$ and $B=0$.
Hence,

$$
X(t)=\sqrt{2} \cos (t / \sqrt{2}) \frac{\partial}{\partial \varphi}+\sin (t / \sqrt{2}) \frac{\partial}{\partial \vartheta}
$$

This would be a good place to stop, but we can also write our field in three coordinates $\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$, so we observe that in terms of these ambient coordinates

$$
\begin{aligned}
\left.\frac{\partial}{\partial \varphi}\right|_{c(t)} & =\left(0, \frac{1}{\sqrt{2}} \cos t,-\frac{1}{\sqrt{2}} \sin t\right) \\
\left.\frac{\partial}{\partial \vartheta}\right|_{c(t)} & =\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{2}} \cos t\right)
\end{aligned}
$$

and we can just substitute these into the expression that we already have:

$$
X(t)=\sqrt{2} \cos (t / \sqrt{2})\left(0, \frac{1}{\sqrt{2}} \cos t,-\frac{1}{\sqrt{2}} \sin t\right)+\sin (t / \sqrt{2})\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{2}} \cos t\right)
$$

(b) Consider two vectors $v_{1}, v_{2} \in T_{N}\left(S^{2}\right), v_{1}=(1,0,0)=\gamma_{1}^{\prime}(0), v_{2}=(0,1,0)=\gamma_{2}^{\prime}(0)$. We know that γ_{1} is geodesic, so the field γ_{1}^{\prime} is parallel along γ_{1}. In particular, $P_{\gamma_{1}}\left(v_{1}\right)=\gamma_{1}^{\prime}(\pi)=(-1,0,0)$.
Note that by Prop. 4.18 from the lectures P_{γ} is a linear isometry for any curve γ (see also Exercise 8.3). In particular, if $X(t)$ is a parallel vector field along γ_{1} with $X(0)=v_{2}=(0,1,0)$, the vectors $\gamma_{1}^{\prime}(t)$ and $X(t)$ form an orthonormal basis of $T_{\gamma_{1}(t)} S^{2}$. By continuity, one can see that $X(t) \equiv(0,1,0)$, and, in particular, $P_{\gamma_{1}}\left(v_{2}\right)=(0,1,0)$. Now, since γ_{2} is geodesic, the field γ_{2}^{\prime} is parallel along γ_{2}, so $P_{\gamma_{2}}\left(v_{2}\right)=\gamma_{2}^{\prime}(\pi)=(0,-1,0) \neq P_{\gamma_{1}}\left(v_{2}\right)$.
8.2. Let $\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the upper-half plane with its usual hyperbolic metric. Let c be the curve in \mathbb{H}^{2} given by $c(t)=i+t$ for $t \in \mathbb{R}$. Identifying the tangent space to each point of \mathbb{H}^{2} in the usual way with \mathbb{C}, find the parallel vector field $X(t) \in \mathbb{C}=T_{c(t)} \mathbb{H}^{2}$ along c, which is determined by its value at $t=0$:

$$
X(0)=1 \in \mathbb{C}=T_{i} \mathbb{H}^{2}
$$

Solution: This question follows the same lines as the Exercise 8.1(a), so we move a bit faster.
Let

$$
X(t)=a(t) \frac{\partial}{\partial x}+b(t) \frac{\partial}{\partial y}
$$

be a parallel vector field along the curve c. Now $c^{\prime}(t)=\frac{\partial}{\partial x}$, so the parallel condition becomes

$$
a^{\prime}(t) \frac{\partial}{\partial x}+a(t)\left(\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}\right)+b^{\prime}(t) \frac{\partial}{\partial y}+b(t)\left(\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}\right)=0
$$

In Exercise 7.2 we computed the Christoffel symbols for the hyperbolic plane, so we know that

$$
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=\frac{1}{y} \frac{\partial}{\partial y} \quad \text { and } \quad \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=\frac{-1}{y} \frac{\partial}{\partial x}
$$

Furthermore, the y-coordinate is fixed along c by $y=1$. Thus, the parallel condition is equivalent to the following system of ODEs:

$$
a^{\prime}(t)-b(t)=0, \quad b^{\prime}(t)+a(t)=0
$$

which has solution

$$
a(t)=A \cos t+B \sin t, \quad b(t)=-A \sin t+B \cos t
$$

for arbitrary constants A, B. Now we know that $X(0)=\frac{\partial}{\partial x}$, so we can find the constants $A=1, B=0$. Thus,

$$
X(t)=\cos t \frac{\partial}{\partial x}-\sin t \frac{\partial}{\partial y}
$$

8.3. Let (M, g) be a Riemannian manifold and $c:[a, b] \rightarrow M$ be a smooth curve. Let $\frac{D}{d t}$ denote the corresponding covariant derivative along the curve c. Let X, Y be any two parallel vector fields X, Y along c. Show that

$$
\frac{d}{d t}\langle X, Y\rangle \equiv 0
$$

i.e., the parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is a linear isometry.
(a) (\star) Prove this statement in the particular case when the vector fields X, Y along c have global extensions $\tilde{X}, \tilde{Y}: M \rightarrow T M$.
(b) Do the same computation for a general case writing $X(t), Y(t)$ in local coordinates.

Solution:

(a) Assume first that there are global vector fields $\tilde{X}, \tilde{Y}: M \rightarrow T M$ with $\tilde{X}(c(t))=X(t)$ and $\tilde{Y}(c(t))=Y(t)$ for all $t \in[a, b]$. Since the Levi-Civita connection is Riemannian, we conclude that

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t}\langle X, Y\rangle=\left.\frac{d}{d t}\right|_{t}(\langle\tilde{X}, \tilde{Y}\rangle \circ c)=c^{\prime}(t)(\langle\tilde{X}, \tilde{Y}\rangle)= \\
& \quad=\left\langle\nabla_{c^{\prime}(t)} \tilde{X}, Y(t)\right\rangle+\left\langle X(t), \nabla_{c^{\prime}(t)} \tilde{Y}\right\rangle=\left\langle\frac{D}{d t} X(t), Y(t)\right\rangle+\left\langle X(t), \frac{D}{d t} Y(t)\right\rangle=0
\end{aligned}
$$

since the vector fields X, Y are parallel along c. But this implies that $t \mapsto\langle X(t), Y(t)\rangle$ is a constant function, i.e. the parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is an isometry, since

$$
\left\langle P_{c} X(a), P_{c} Y(a)\right\rangle=\langle X(b), Y(b)\rangle=\langle X(a), Y(a)\rangle
$$

(b) Now we assume that X, Y do not have global extensions. Assume that there is a coordinate chart $\varphi:\left(x_{1}, \ldots, x_{n}\right): U \rightarrow V$ with $c([a, b]) \subset U$. Then we can write

$$
X(t)=\left.\sum a_{j}(t) \frac{\partial}{\partial x_{j}}\right|_{c(t)}, \quad Y(t)=\left.\sum b_{j}(t) \frac{\partial}{\partial x_{j}}\right|_{c(t)}
$$

and we have

$$
\frac{d}{d t}\langle X, Y\rangle=\frac{d}{d t}\left(\sum_{j, k} a_{j} b_{k}\left(\left\langle\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right\rangle \circ c\right)\right)
$$

As before, the Riemannian property of the Levi-Civita connection yields

$$
\frac{d}{d t}\left(\left\langle\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right\rangle \circ c\right)=\left\langle\nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{j}},\left.\frac{\partial}{\partial x_{k}}\right|_{c(t)}\right\rangle+\left\langle\left.\frac{\partial}{\partial x_{j}}\right|_{c(t)}, \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{k}}\right\rangle
$$

This implies that

$$
\begin{aligned}
& \frac{d}{d t}\langle X, Y\rangle=\sum_{i, k}\left(a_{j}^{\prime} b_{k}\right.\left.+a_{j} b_{k}^{\prime}\right)\left\langle\frac{\partial}{\partial x_{j}}, \frac{\partial}{\partial x_{k}}\right\rangle \circ c+a_{j} b_{k}\left(\left\langle\nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{j}},\left.\frac{\partial}{\partial x_{k}}\right|_{c(t)}\right\rangle+\left\langle\left.\frac{\partial}{\partial x_{j}}\right|_{c(t)}, \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{k}}\right\rangle\right) \\
&=\left\langle\left.\sum_{j} a_{j}^{\prime}(t) \frac{\partial}{\partial x_{j}}\right|_{c(t)}+a_{j}(t) \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{j}},\left.\sum_{k} b_{k}(t) \frac{\partial}{\partial x_{k}}\right|_{c(t)}\right\rangle+ \\
&+\left\langle\left.\sum_{j} a_{j}(t) \frac{\partial}{\partial x_{j}}\right|_{c(t)},\left.\sum_{k} b_{k}^{\prime}(t) \frac{\partial}{\partial x_{k}}\right|_{c(t)}+b_{k}(t) \nabla_{c^{\prime}(t)} \frac{\partial}{\partial x_{k}}\right\rangle= \\
&=\left\langle\sum_{j} \frac{D}{d t}\left(a_{j} \frac{\partial}{\partial x_{j}} \circ c\right), Y\right\rangle+\left\langle X, \sum_{k} \frac{D}{d t}\left(a_{k} \frac{\partial}{\partial x_{k}} \circ c\right)=\left\langle\frac{D}{d t} X, Y\right\rangle+\left\langle X, \frac{D}{d t} Y\right\rangle=0 .\right.
\end{aligned}
$$

Finally, if we need k coordinate charts U_{1}, \ldots, U_{k} to cover $c([a, b])$, i.e., if we have

$$
c([a, b]) \subset \bigcup_{j=1}^{k} U_{j}
$$

with a partition $a<t_{1}<t_{2} \cdots<t_{k-1}<b$ such that $c(a), c\left(t_{1}\right) \in U_{1}, c\left(t_{1}\right), c\left(t_{2}\right) \in U_{2}, \ldots, c\left(t_{k-1}\right), c(b) \in$ U_{k}, we conclude with the previous argument that $\frac{d}{d t}\langle X, Y\rangle$ is constant on the segments $\left[a, t_{1}\right],\left[t_{1}, t_{2}\right], \ldots,\left[t_{k-1}, b\right]$, and therefore, constant on all $[a, b]$.
8.4. Given a curve $c:[a, b] \rightarrow \mathbb{R}^{3}, c(t)=(f(t), 0, g(t))$ without self-intersections and with $f(t)>0$ for all $t \in[a, b]$, let $M \subset \mathbb{R}^{3}$ denote the surface of revolution obtained by rotating this curve around the z-axis. Let ∇ denote the Levi-Civita connection of M. An almost global coordinate chart is given by $\varphi: U \rightarrow V:=(a, b) \times(0,2 \pi)$,

$$
\varphi^{-1}\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right) \cos x_{2}, f\left(x_{1}\right) \sin x_{2}, g\left(x_{1}\right)\right)
$$

(a) Calculate the Christoffel symbols of this coordinate chart and express $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}$ in terms of the basis $\frac{\partial}{\partial x_{k}}$.
(b) Let $\gamma_{1}(t)=\varphi^{-1}\left(x_{1}+t, x_{2}\right)$. Calculate

$$
\frac{D}{d t} \gamma_{1}^{\prime}
$$

where $\frac{D}{d t}$ denotes the covariant derivative along γ_{1}. Show that this vector field along γ_{1} vanishes if and only if the generating curve c of M is parametrized proportionally to arc-length. Note that γ_{1} is obtained by rotation of c by a fixed angle. Derive from these facts that meridians of a surface of revolution are geodesics if they are parametrized proportionally to arc length.
(c) Let $\gamma_{2}(t)=\varphi^{-1}\left(x_{1}, x_{2}+t\right)$. Calculate

$$
\frac{D}{d t} \gamma_{2}^{\prime}
$$

where $\frac{D}{d t}$ denotes the covariant derivative along γ_{2}. Show that this vector field along γ_{2} vanishes if and only if $f^{\prime}\left(x_{1}\right)=0$. Explain that this implies that parallels of a surface of revolution are geodesics if they have locally maximal or minimal radius.

Solution:

(a) We have

$$
\begin{aligned}
\left.\frac{\partial}{\partial x_{1}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)} & =\left(f^{\prime}\left(x_{1}\right) \cos x_{2}, f^{\prime}\left(x_{1}\right) \sin x_{2}, g^{\prime}\left(x_{1}\right)\right), \\
\left.\frac{\partial}{\partial x_{2}}\right|_{\varphi^{-1}\left(x_{1}, x_{2}\right)} & =\left(-f\left(x_{1}\right) \sin x_{2}, f\left(x_{1}\right) \cos x_{2}, 0\right) .
\end{aligned}
$$

This implies that

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2} & 0 \\
0 & f^{2}\left(x_{1}\right)
\end{array}\right)=\left(\begin{array}{cc}
\left\|c^{\prime}\left(x_{1}\right)\right\|^{2} & 0 \\
0 & f^{2}\left(x_{1}\right)
\end{array}\right)
$$

and

$$
\left(g^{i j}\right)=\left(\begin{array}{cc}
\frac{1}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} & 0 \\
0 & \frac{1}{f^{2}\left(x_{1}\right)}
\end{array}\right) .
$$

Consequently, we have

$$
\begin{aligned}
g_{11,1} & =2\left(f^{\prime}\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) g^{\prime \prime}\left(x_{1}\right)\right) \\
g_{22,1} & =2 f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)
\end{aligned}
$$

and the Christoffel symbols are calculated as

$$
\begin{aligned}
\Gamma_{11}^{1} & =\frac{1}{2} g^{11}\left(g_{11,1}+g_{11,1}-g_{11,1}\right)=\frac{f^{\prime}\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) g^{\prime \prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}}, \\
\Gamma_{11}^{2} & =\frac{1}{2} g^{22}\left(g_{12,1}+g_{12,1}-g_{11,2}\right)=0, \\
\Gamma_{12}^{1} & =\frac{1}{2} g^{11}\left(g_{11,2}+g_{12,1}-g_{12,1}\right)=0=\Gamma_{21}^{1}, \\
\Gamma_{12}^{2} & =\frac{1}{2} g^{22}\left(g_{12,2}+g_{22,1}-g_{12,2}\right)=\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)}=\Gamma_{21}^{2}, \\
\Gamma_{22}^{1} & =\frac{1}{2} g^{11}\left(g_{21,2}+g_{21,2}-g_{22,1}\right)=\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}}, \\
\Gamma_{22}^{2} & =\frac{1}{2} g^{22}\left(g_{22,2}+g_{22,2}-g_{22,2}\right)=0 .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}} & =\frac{f^{\prime}\left(x_{1}\right) f^{\prime \prime}\left(x_{1}\right)+g^{\prime}\left(x_{1}\right) g^{\prime \prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}} \\
\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{2}} & =\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)} \frac{\partial}{\partial x_{2}} \\
\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{1}} & =\frac{f^{\prime}\left(x_{1}\right)}{f\left(x_{1}\right)} \frac{\partial}{\partial x_{2}} \\
\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}} & =\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}}
\end{aligned}
$$

(b) Note that we have

$$
\gamma_{1}^{\prime}(t)=\left.\frac{\partial}{\partial x_{1}}\right|_{\gamma_{1}(t)}
$$

This implies that

$$
\begin{aligned}
&\left(\frac{D}{d t} \gamma_{1}^{\prime}\right)(t)=\nabla_{\gamma_{1}^{\prime}(t)} \frac{\partial}{\partial x_{1}}=\left(\nabla_{\frac{\partial}{\partial x_{1}}} \frac{\partial}{\partial x_{1}}\right)\left(\gamma_{1}(t)\right)= \\
&=\left.\frac{f^{\prime}\left(x_{1}+t\right) f^{\prime \prime}\left(x_{1}+t\right)+g^{\prime}\left(x_{1}+t\right) g^{\prime \prime}\left(x_{1}+t\right)}{\left(f^{\prime}\left(x_{1}+t\right)\right)^{2}+\left(g^{\prime}\left(x_{1}+t\right)\right)^{2}} \frac{\partial}{\partial x_{1}}\right|_{\gamma_{1}(t)} \in T_{\gamma_{1}(t)} M
\end{aligned}
$$

The condition $\frac{D}{d t} \gamma_{1}^{\prime} \equiv 0$ is equivalent to $f^{\prime}(t) f^{\prime \prime}(t)+g^{\prime}(t) g^{\prime \prime}(t)=0$ for all $t \in(a, b)$, which in its turn is equivalent to $\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}=$ const. Since

$$
\left\|c^{\prime}(t)\right\|^{2}=\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}
$$

we conclude that $\frac{D}{d t} \gamma_{1}^{\prime}$ vanishes identically if and only if c is parametrized proportionally to arc length. Since c and γ_{1} are obtained from each other by an isometry of \mathbb{R}^{3}, namely a rotation by the angle x_{2} around the z-axis, c is parametrized proportionally to arc length if and only if γ_{1} is parametrized proportionally to arc length.
(c) We have

$$
\gamma_{2}^{\prime}(t)=\left.\frac{\partial}{\partial x_{2}}\right|_{\gamma_{2}(t)}
$$

This implies that

$$
\left(\frac{D}{d t} \gamma_{2}^{\prime}\right)(t)=\nabla_{\gamma_{2}^{\prime}(t)} \frac{\partial}{\partial x_{2}}=\left(\nabla_{\frac{\partial}{\partial x_{2}}} \frac{\partial}{\partial x_{2}}\right)\left(\gamma_{2}(t)\right)=\left.\frac{-f\left(x_{1}\right) f^{\prime}\left(x_{1}\right)}{\left(f^{\prime}\left(x_{1}\right)\right)^{2}+\left(g^{\prime}\left(x_{1}\right)\right)^{2}} \frac{\partial}{\partial x_{1}}\right|_{\gamma_{2}(t)} \in T_{\gamma_{2}(t)} M
$$

Since $f>0$, the condition $\frac{D}{d t} \gamma_{2}^{\prime} \equiv 0$ is equivalent to $f^{\prime}\left(x_{1}\right)=0$, which holds, in particular, if f has a local maximum or minimum at x_{1}. Now observe that γ_{2} is a parallel of the surface of revolution M, and $f\left(x_{1}\right)$ is its radius (i.e., the distance to the z-axis).

