Riemannian Geometry IV, Homework 8 (Week 8)

Due date for starred problems: Wednesday, December 3.
8.1. Let $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$ be the unit sphere inside 3 -space, with the induced metric from the standard Euclidean metric on \mathbb{R}^{3}.
(a) (\star) Let c be the curve on S^{2} given by

$$
c(t)=\left(\frac{1}{\sqrt{2}}, \frac{\sin t}{\sqrt{2}}, \frac{\cos t}{\sqrt{2}}\right)
$$

and let $v \in T_{c(0)} S^{2}$ be given by

$$
v=(0,1,0) \in T_{c(0)} S^{2} \subset T_{c(0)} \mathbb{R}^{3}
$$

Find the unique $X \in \mathfrak{X}_{c}\left(S^{2}\right)$ that is parallel along c and $X(0)=v$.
(b) Let $\gamma_{1}, \gamma_{2}:[0, \pi] \rightarrow S^{2}$ be two curves connecting the north and south poles N and S defined by

$$
\begin{aligned}
\gamma_{1}(t) & =(0, \sin t, \cos t) \\
\gamma_{2}(t) & =(\sin t, 0, \cos t)
\end{aligned}
$$

Show that the isomorphisms of $T_{N}\left(S^{2}\right)$ and $T_{S}\left(S^{2}\right)$ given by parallel transports along γ_{1} and γ_{2} are different, i.e. find $u \in T_{N}\left(S^{2}\right)$ such that $P_{\gamma_{1}}(u) \neq P_{\gamma_{2}}(u)$.
8.2. Let $\mathbb{H}^{2}=\{z \in \mathbb{C} \mid \operatorname{Im}(z)>0\}$ be the upper-half plane with its usual hyperbolic metric. Let c be the curve in \mathbb{H}^{2} given by $c(t)=i+t$ for $t \in \mathbb{R}$. Identifying the tangent space to each point of \mathbb{H}^{2} in the usual way with \mathbb{C}, find the parallel vector field $X(t) \in \mathbb{C}=T_{c(t)} \mathbb{H}^{2}$ along c, which is determined by its value at $t=0$:

$$
X(0)=1 \in \mathbb{C}=T_{i} \mathbb{H}^{2}
$$

8.3. Let (M, g) be a Riemannian manifold and $c:[a, b] \rightarrow M$ be a smooth curve. Let $\frac{D}{d t}$ denote the corresponding covariant derivative along the curve c. Let X, Y be any two parallel vector fields X, Y along c. Show that

$$
\frac{d}{d t}\langle X, Y\rangle \equiv 0
$$

i.e., the parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is a linear isometry.
 extensions $\tilde{X}, \tilde{Y}: M \rightarrow T M$.
(b) Do the same computation for a general case writing $X(t), Y(t)$ in local coordinates.
8.4. Given a curve $c:[a, b] \rightarrow \mathbb{R}^{3}, c(t)=(f(t), 0, g(t))$ without self-intersections and with $f(t)>0$ for all $t \in[a, b]$, let $M \subset \mathbb{R}^{3}$ denote the surface of revolution obtained by rotating this curve around the z-axis. Let ∇ denote the Levi-Civita connection of M. An almost global coordinate chart is given by $\varphi: U \rightarrow V:=(a, b) \times(0,2 \pi)$,

$$
\varphi^{-1}\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right) \cos x_{2}, f\left(x_{1}\right) \sin x_{2}, g\left(x_{1}\right)\right) .
$$

(a) Calculate the Christoffel symbols of this coordinate chart and express $\nabla \frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}}$ in terms of the basis $\frac{\partial}{\partial x_{k}}$.
(b) Let $\gamma_{1}(t)=\varphi^{-1}\left(x_{1}+t, x_{2}\right)$. Calculate

$$
\frac{D}{d t} \gamma_{1}^{\prime},
$$

where $\frac{D}{d t}$ denotes the covariant derivative along γ_{1}. Show that this vector field along γ_{1} vanishes if and only if the generating curve c of M is parametrized proportional to arc-length. Note that γ_{1} is obtained by rotation of c by a fixed angle. Derive from these facts that meridians of a surface of revolution are geodesics if they are parametrized proportional to arc length.
(c) Let $\gamma_{2}(t)=\varphi^{-1}\left(x_{1}, x_{2}+t\right)$. Calculate

$$
\frac{D}{d t} \gamma_{2}^{\prime}
$$

where $\frac{D}{d t}$ denotes the covariant derivative along γ_{2}. Show that this vector field along γ_{2} vanishes if and only if $f^{\prime}\left(x_{1}\right)=0$. Explain that this implies that parallels of a surface of revolution are geodesics if they have locally maximal or minimal radius.

