Riemannian Geometry IV, Homework 9 (Week 9)

9.1. First Variation Formula of energy.

Let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a variation of a smooth curve $c:[a, b] \rightarrow M$ with $c^{\prime}(t) \neq 0$ for all $t \in[a, b]$, and let X be its variational vector field. Let $E:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}_{+}$denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

(a) Show that

$$
E^{\prime}(0)=\left\langle X(b), c^{\prime}(b)\right\rangle-\left\langle X(a), c^{\prime}(a)\right\rangle-\int_{a}^{b}\left\langle X(t), \frac{D}{d t} c^{\prime}(t)\right\rangle d t
$$

Simplify the formula for the cases when
(b) c is a geodesic,
(c) F is a proper variation,
(d) c is a geodesic and F is a proper variation.

Let $c:[a, b] \rightarrow M$ be a curve connecting p and q (not necessarily parametrized proportional to arc length). Show that
(e) $E^{\prime}(0)=0$ for every proper variation implies that c is a geodesic.
(f) Assume that c minimizes the energy amongst all curves $\gamma:[a, b] \rightarrow M$ which connect p and q. Then c is a geodesic.

9.2. Rescaling Lemma.

Let $c:[0, a] \rightarrow M$ be a geodesic, and $k>0$. Define a curve γ by

$$
\gamma:[0, a / k] \rightarrow M, \quad \gamma(t)=c(k t)
$$

Show that γ is geodesic with $\gamma^{\prime}(t)=k c^{\prime}(k t)$.
9.3. Let M be a smooth manifold, let $\mathfrak{X}(M)$ be the vector space of smooth vector fields on M, and ∇ be a general affine connection (we do not require a Riemannian metric on M and the "Riemannian property", neither the "torsion-free property" of the Levi-Civita connection). We say a map

$$
A: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \rightarrow C^{\infty}(M) \text { or } \mathfrak{X}(M)
$$

is a tensor if it is linear in each argument, i.e.,

$$
A\left(X_{1}, \cdots, f X_{i}+g Y_{i}, \cdots, X_{r}\right)=f A\left(X_{1}, \cdots, X_{i}, \cdots, X_{r}\right)+g A\left(X_{1}, \cdots, Y_{i}, \cdots, X_{r}\right)
$$

for all $X, Y \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$.
(a) Show that

$$
T: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M), \quad T(X, Y)=[X, Y]-\left(\nabla_{X} Y-\nabla_{Y} X\right)
$$

is a tensor (called the torsion of the manifold M).
(b) Let

$$
A: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{r \text { factors }} \rightarrow C^{\infty}(M)
$$

be a tensor. The covariant derivative of A is a map

$$
\nabla A: \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{r+1 \text { factors }} \rightarrow C^{\infty}(M),
$$

defined by

$$
\nabla A\left(X_{1}, \ldots, X_{r}, Y\right)=Y\left(A\left(X_{1}, \ldots, X_{r}\right)\right)-\sum_{j=1}^{r} A\left(X_{1}, \ldots, \nabla_{Y} X_{j}, \ldots, X_{r}\right)
$$

Show that ∇A is a tensor.
(c) Let (M, g) be a Riemannian manifold and $G: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow C^{\infty}(M)$ be the Riemannian tensor, i.e., $G(X, Y)=\langle X, Y\rangle$. Calculate ∇G. What does it mean that $\nabla G \equiv 0$?

