Differential Geometry III, Homework 1 (Week 1)

Due date for starred problems: Thursday, October 27.

Plane curves - 1

- 1.1. Sketch the trace of the smooth curve given by $\alpha(u) = (u^5, u^2 1)$, and mark the singular points.
- **1.2.** Let $\alpha: I \to \mathbb{R}^2$ be a smooth curve, and let $[a,b] \subset I$ be a closed interval. For every partition $a = u_0 < u_1 < \dots < u_n = b$ consider the sum

$$\ell_{\boldsymbol{\alpha},P} := \sum_{i=1}^{n} \|\boldsymbol{\alpha}(u_i) - \boldsymbol{\alpha}(u_{i-1})\|$$

where P stands for the given partition. Give a geometric interpretation of $\ell_{\alpha,P}$. What length does $\ell_{\alpha,P}$ measure? Now assume that the partition becomes finer, i.e., $||P|| := \max_{i=1,\dots,n} |u_i - u_{i-1}|$ becomes smaller. What is the limit of $\ell_{\alpha,P}$ as $||P|| \to 0$?

- **1.3.** (\star) An *epicycloid* α is obtained as the locus of a point on the circumference of a circle of radius r which rolls without slipping on a circle of the same radius.
 - (a) Sketch α .
 - (b) Show that the epicycloid can be parametrized by

$$\alpha(u) = (2r\sin u - r\sin 2u, \ 2r\cos u - r\cos 2u), \qquad u \in \mathbb{R}.$$

Find the length of α between the singular points at u=0 and $u=2\pi$.

1.4. (\star) (a) Let $\alpha(u)$ and $\beta(u)$ be two smooth plane curves. Show that

$$\frac{d}{du}(\boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}(u)) = \boldsymbol{\alpha}'(u) \cdot \boldsymbol{\beta}(u) + \boldsymbol{\alpha}(u) \cdot \boldsymbol{\beta}'(u),$$

where $\alpha(u) \cdot \beta(u)$ denotes a Euclidean dot product of vectors $\alpha(u)$ and $\beta(u)$.

Hint: write $\alpha(u) = (\alpha_1(u), \alpha_2(u)), \beta(u) = (\beta_1(u), \beta_2(u))$ and compute everything in coordinates.

- (b) Let $\alpha(u): I \to \mathbb{R}^2$ be a smooth curve which does not pass through the origin. Suppose there exists $u_0 \in I$ such that the point $\alpha(u_0)$ is the closest to the origin amongst all the points of the trace of α . Show that $\alpha(u_0)$ is orthogonal to $\alpha'(u_0)$.
- **1.5.** The second derivative $\alpha''(u)$ of a smooth plane curve $\alpha(u)$ is identically zero. What can be said about α ?
- **1.6.** Let $\alpha:(0,\pi)\to\mathbb{R}^2$ be a curve defined by

$$\alpha(u) = (\sin u, \cos u + \log \tan \frac{u}{2})$$

The trace of α is called a *tractrix*.

- (a) Sketch α .
- (b) Show that a tangent vector at $\alpha(u_0)$ can be written as

$$\alpha'(u_0) = (\cos u_0, -\sin u_0 + \frac{1}{\sin u_0})$$

Show that $\alpha(u)$ is smooth, and it is regular everywhere except $u = \pi/2$.

- (c) Write down the equation of a tangent line l_{u_0} to the trace of α at $\alpha(u_0)$.
- (d) Show that the distance between $\alpha(u_0)$ and the intersection of l_{u_0} with y-axis is constantly equal to 1.