Differential Geometry III, Homework 10 (Week 10)

Coordinate curves, angles and area

10.1. Let $\boldsymbol{x}: U \rightarrow S$ be a local parametrization of a regular surface S, and denote by E, F, G the coefficients of the first fundamental form in this parametrization. Show that the tangent vector $a \partial_{u} \boldsymbol{x}+b \partial_{v} \boldsymbol{x}$ bisects the angle between the coordinate curves if and only if

$$
\sqrt{G}(a E+b F)=\sqrt{E}(a F+b G)
$$

Further, if

$$
\boldsymbol{x}(u, v)=\left(u, v, u^{2}-v^{2}\right)
$$

find a vector tangential to S which bisects the angle between the coordinate curves at the point $(1,1,0) \in S$.
10.2. Find two families of curves on the helicoid parametrized by

$$
\boldsymbol{x}(u, v)=(v \cos u, v \sin u, u)
$$

which, at each point, bisect the angles between the coordinate curves. (Show that they are given by $u \pm \sinh ^{-1} v=c$, where c is a constant on each curve in the family.)
10.3. The coordinate curves of a parametrization $\boldsymbol{x}(u, v)$ constitute a Chebyshev net if the lengths of the opposite sides of any quadrilateral formed by them are equal.
(a) Show that a necessary and sufficient condition for this is

$$
\frac{\partial E}{\partial v}=\frac{\partial G}{\partial u}=0
$$

(b) Show that if coordinate curves constitute a Chebyshev net, then it is possible to reparametrize the coordinate neighborhood in such a way that the new coefficients of the first fundamental form are

$$
E=1, \quad F=\cos \vartheta, \quad G=1
$$

where ϑ is the angle between coordinate curves.
10.4. Show that a surface of revolution can always be parametrized so that

$$
E=E(v), \quad F=0, \quad G=1
$$

10.5. Let S be the surface $\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=x^{2}-y^{2}\right\}$ and let \mathcal{F} be the family of curves on S obtained as the intersection of S with the planes $z=$ const. Find the family of curves on S which meet \mathcal{F} orthogonally and show that they are the intersections of S with the family of hyperbolic cylinders $x y=$ const.
10.6. Using the notation of Exercise 10.2, show that the family of curves orthogonal to the family

$$
v \cos u=\mathrm{const}
$$

is the family defined by $\left(1+v^{2}\right) \sin ^{2} u=$ const.

