Differential Geometry III, Solutions 1 (Week 11)

Isometries and conformal maps - 1

1.1. Let $a>0$. Construct explicitly a local isometry from the plane $P=\left\{(u, v, 0) \in \mathbb{R}^{3} \mid u, v \in \mathbb{R}\right\}$ onto the cylinder $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=a^{2}\right\}$.

Solution:

A canonical parametrization of the plane P is

$$
\boldsymbol{x}: U=\mathbb{R}^{2} \longrightarrow P, \quad \boldsymbol{x}(u, v)=(u, v, 0)
$$

Clearly, $\boldsymbol{x}_{u}=(1,0,0), \boldsymbol{x}_{v}=(0,1,0)$ and $E=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{u}\right\rangle=1, F=\left\langle\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\rangle=0$ and $G=\left\langle\boldsymbol{x}_{v}, \boldsymbol{x}_{v}\right\rangle=1$.
We define a candidate for the isometry via this parametrisation

$$
f: P \longrightarrow S, \quad f(u, v, 0):=(a \cos (\omega u), a \sin (\omega u), v)
$$

for some positive constant $\omega>0$ (we could also interchange the role of u and v) (more precisely, we define $f \circ \boldsymbol{x}: U \longrightarrow S)$. In order to check that f is a local isometry, we just need to calculate the coefficents of the fundamental form of S with respect to the (local) parametrisation $f \circ \boldsymbol{x}$, and see whether they equal E, F and G. But here we have

$$
f_{u}=(f \circ \boldsymbol{x})_{u}=(-a \omega \sin (\omega u), a \omega \cos (\omega u), 0) \quad \text { and } \quad f_{v}=(f \circ \boldsymbol{x})_{v}=(0,0,1),
$$

so that

$$
\widetilde{E}=\left\langle f_{u}, f_{u}\right\rangle=a^{2} \omega^{2}, \quad \widetilde{F}=\left\langle f_{u}, f_{v}\right\rangle=0 \quad \text { and } \quad \widetilde{G}=\left\langle f_{v}, f_{v}\right\rangle=1
$$

We have $\widetilde{F}=F$ and $\widetilde{G}=G$. In order to have $\widetilde{E}=E$, we need $\omega=1 / a$, then f is a local isometry (by Proposition 8.15).
1.2. (\star) Let b be a positive number such that $\sqrt{1+b^{2}}$ is an integer n. Let S be the circular cone obtained by rotating the curve given by $\boldsymbol{\alpha}(v)=(v, 0, b v), v>0$, about the z-axis. Let the coordinate $x y$-plane P be parametrized by polar coordinates (r, ϑ) :

$$
\boldsymbol{x}: U=(0, \infty) \times(0,2 \pi) \longrightarrow P, \quad \boldsymbol{x}(r, \vartheta)=(r \cos \vartheta, r \sin \vartheta, 0)
$$

Show that the map $f: P \backslash\{(0,0,0)\} \longrightarrow S$ defined on $\boldsymbol{x}(U)$ by

$$
f(\boldsymbol{x}(r, \vartheta))=\frac{1}{n}(r \cos n \vartheta, r \sin n \vartheta, b r)
$$

is a local isometry on $\boldsymbol{x}(U)$.

Solution:
We have

$$
\boldsymbol{x}_{r}=(\cos \vartheta, \sin \vartheta, 0) \quad \text { and } \quad \boldsymbol{x}_{\vartheta}=(-r \sin \vartheta, r \cos \vartheta, 0),
$$

so that the coefficients of the first fundamental form of P with respect to the parametrization \boldsymbol{x} (polar coordinates - parametrized $P \backslash\{\mathbf{0}\}$) are

$$
E(r, \vartheta)=1, \quad F(r, \vartheta)=0 \quad \text { and } \quad G(r, \vartheta)=r^{2}
$$

Now calculate

$$
f_{r}:=(f \circ \boldsymbol{x})_{r}=\frac{1}{n}(\cos (n \vartheta), \sin (n \vartheta), b) \quad \text { and } \quad f_{\vartheta}:=(f \circ \boldsymbol{x})_{\vartheta}=(-r \sin (n \vartheta), r \cos (n \vartheta), 0),
$$

so that

$$
\widetilde{E}:=\left\langle f_{r}, f_{r}\right\rangle=\frac{1+b^{2}}{n^{2}}, \quad \widetilde{F}:=\left\langle f_{r}, f_{\vartheta}\right\rangle=0 \quad \text { and } \quad \widetilde{G}:=\left\langle f_{\vartheta}, f_{\vartheta}\right\rangle=r^{2}
$$

By assumption, $\left(1+b^{2}\right) / n^{2}=1$, so that $\widetilde{E}=E, \widetilde{F}=F$ and $\widetilde{G}=G$, hence f is a local isometry by Proposition 8.15.
1.3. Let S_{1}, S_{2}, S_{3} be regular surfaces.
(a) Suppose that $f: S_{1} \longrightarrow S_{2}$ and $g: S_{2} \longrightarrow S_{3}$ are local isometries. Prove that $g \circ f: S_{1} \longrightarrow S_{3}$ is a local isometry.
(b) Suppose that $f: S_{1} \longrightarrow S_{2}$ and $g: S_{2} \longrightarrow S_{3}$ are conformal maps with conformal factors $\lambda: S_{1} \longrightarrow(0, \infty)$ and $\mu: S_{2} \longrightarrow(0, \infty)$, respectively. Prove that $g \circ f: S_{1} \longrightarrow S_{3}$ is a conformal map and calculate its conformal factor. (The conformal factor of a conformal map is the function appearing as factor in front of the inner product in the definition.)
(c) Let f and g be conformal maps with conformal factors λ and μ as in the previous part. Find a condition on λ and μ such that $g \circ f$ is a (local) isometry.

Solution:
(a) By the definition of a local isometry,

$$
\left\langle d_{p_{1}} f\left(\boldsymbol{v}_{1}\right), d_{p_{1}} f\left(\boldsymbol{w}_{1}\right)\right\rangle_{f\left(p_{1}\right)}=\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}_{1}\right\rangle_{p_{1}} \quad \text { and } \quad\left\langle d_{p_{2}} g\left(\boldsymbol{v}_{2}\right), d_{p_{2}} f\left(\boldsymbol{w}_{2}\right)\right\rangle_{g\left(p_{2}\right)}=\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{2}\right\rangle_{p_{2}}
$$

for all $p_{1} \in S_{1}, \boldsymbol{v}_{1}, \boldsymbol{w}_{1} \in T_{p_{1}} S_{1}$ and $p_{2} \in S_{2}, \boldsymbol{v}_{2}, \boldsymbol{w}_{2} \in T_{p_{2}} S_{2}$.
This notation is also already part ot the solution: applying these two equations with $p_{2}=f\left(p_{1}\right)$, $\boldsymbol{v}_{2}=d_{p_{1}} f\left(\boldsymbol{v}_{1}\right)$ and $\boldsymbol{w}_{2}=d_{p_{1}} f\left(\boldsymbol{w}_{1}\right)$, and using the chain rule

$$
d_{p_{1}}(g \circ f)\left(\boldsymbol{w}_{1}\right)=d_{f\left(p_{1}\right)} g\left(d_{p_{1}} f\left(\boldsymbol{w}_{1}\right)\right)
$$

for all $p_{1} \in S_{1}$ and $\boldsymbol{w}_{1} \in T_{p_{1}} S_{1}$, we obtain

$$
\begin{aligned}
\left\langle d_{p_{1}}(g \circ f)\left(\boldsymbol{v}_{1}\right), d_{p_{1}}(g \circ f) f\left(\boldsymbol{w}_{1}\right)\right\rangle_{(g \circ f)\left(p_{1}\right)} & =\left\langle d_{f\left(p_{1}\right)} g\left(d_{p_{1}}\left(\boldsymbol{v}_{1}\right)\right), d_{f\left(p_{1}\right)} g\left(d_{p_{1}}\left(\boldsymbol{w}_{1}\right)\right)\right\rangle_{\left(g\left(f\left(p_{1}\right)\right)\right.} \\
& =\left\langle d_{p_{1}}\left(\boldsymbol{v}_{1}\right), d_{p_{1}}\left(\boldsymbol{w}_{1}\right)\right\rangle_{f\left(p_{1}\right)} \\
& =\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}_{1}\right\rangle_{p_{1}}
\end{aligned}
$$

using the chain rule for the first, the isometry of g for the second and the isometry of f for the last equality. Hence we have shown that $g \circ f$) is a local isometry using the definition.
(b) The proof is almost the same as the one of the first part: since f and g are conformal maps, we have

$$
\left\langle d_{p_{1}} f\left(\boldsymbol{v}_{1}\right), d_{p_{1}} f\left(\boldsymbol{w}_{1}\right)\right\rangle_{f\left(p_{1}\right)}=\lambda\left(p_{1}\right)\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}_{1}\right\rangle_{p_{1}} \quad \text { and } \quad\left\langle d_{p_{2}} g\left(\boldsymbol{v}_{2}\right), d_{p_{2}} f\left(\boldsymbol{w}_{2}\right)\right\rangle_{g\left(p_{2}\right)}=\mu\left(p_{2}\right)\left\langle\boldsymbol{v}_{2}, \boldsymbol{w}_{2}\right\rangle_{p_{2}}
$$

for all $p_{1} \in S_{1}, \boldsymbol{v}_{1}, \boldsymbol{w}_{1} \in T_{p_{1}} S_{1}$ and $p_{2} \in S_{2}, \boldsymbol{v}_{2}, \boldsymbol{w}_{2} \in T_{p_{2}} S_{2}$.
Applying these two equations with $p_{2}=f\left(p_{1}\right), \boldsymbol{v}_{2}=d_{p_{1}} f\left(\boldsymbol{v}_{1}\right)$ and $\boldsymbol{w}_{2}=d_{p_{1}} f\left(\boldsymbol{w}_{1}\right)$, and using again the chain rule we obtain

$$
\begin{aligned}
\left\langle d_{p_{1}}(g \circ f)\left(\boldsymbol{v}_{1}\right), d_{p_{1}}(g \circ f) f\left(\boldsymbol{w}_{1}\right)\right\rangle_{(g \circ f)\left(p_{1}\right)} & =\left\langle d_{f\left(p_{1}\right)} g\left(d_{p_{1}}\left(\boldsymbol{v}_{1}\right)\right), d_{f\left(p_{1}\right)} g\left(d_{p_{1}}\left(\boldsymbol{w}_{1}\right)\right)\right\rangle_{\left(g\left(f\left(p_{1}\right)\right)\right.} \\
& =\mu\left(f\left(p_{1}\right)\right)\left\langle d_{p_{1}}\left(\boldsymbol{v}_{1}\right), d_{p_{1}}\left(\boldsymbol{w}_{1}\right)\right\rangle_{f\left(p_{1}\right)} \\
& =\mu\left(f\left(p_{1}\right)\right) \lambda\left(p_{1}\right)\left\langle\boldsymbol{v}_{1}, \boldsymbol{w}_{1}\right\rangle_{p_{1}}
\end{aligned}
$$

using the chain rule for the first, the conformality of g for the second and the conformality of f for the last equality. Hence we have shown that $g \circ f$) is a conformal map with conformal factor

$$
(\mu \circ f) \cdot \lambda: S_{1} \longrightarrow\left(0, \infty, \quad p_{1} \mapsto \mu\left(f\left(p_{1}\right)\right) \lambda\left(p_{1}\right)\right.
$$

(c) The third part is again rather trivial. We want that $(\mu \circ f) \cdot \lambda$ equals the constant function 1 on S_{1}, i.e., that

$$
\mu\left(f\left(p_{1}\right)\right)=\frac{1}{\lambda\left(p_{1}\right)}
$$

for all $p_{1} \in S_{1}$. In particular, we do not need any restriction on the behaviour of μ outside the range $f\left(S_{1}\right)$ of f.
1.4. Let S be the surface of revolution parametrized by

$$
\boldsymbol{x}(u, v)=\left(\cos v \cos u, \cos v \sin u,-\sin v+\log \tan \left(\frac{\pi}{4}+\frac{v}{2}\right)\right)
$$

where $0<u<2 \pi, 0<v<\pi / 2$. Let S_{1} be the region

$$
S_{1}=\{\boldsymbol{x}(u, v) \mid 0<u<\pi, 0<v<\pi / 2\}
$$

and let S_{2} be the region

$$
S_{2}=\{\boldsymbol{x}(u, v) \mid 0<u<2 \pi, \pi / 3<v<\pi / 2\}
$$

Show that the map

$$
\boldsymbol{x}(u, v) \mapsto \boldsymbol{x}\left(2 u, \arccos \left(\frac{1}{2} \cos v\right)\right)
$$

is an isometry from S_{1} onto S_{2}.

Solution:

The map $f: S_{1} \longrightarrow S_{2}$ is actually a bijection (see below), so one can prove that it gives rise to a local parametrization; we will use Prop. 8.15 from the lectures and show that the coefficients E, F and G (w.r.t. the parametrization $\boldsymbol{x})$ are the same as the coefficients $\widetilde{E}, \widetilde{F}$ and \widetilde{G} w.r.t the parametrization

$$
\widetilde{\boldsymbol{x}}(u, v):=\boldsymbol{x}\left(2 u, \arccos \left(\frac{1}{2} \cos v\right)\right)
$$

Let us calculate E, F and G first. We have

$$
\boldsymbol{x}_{u}=(-\cos v \sin u, \cos v \cos u, 0), \quad \boldsymbol{x}_{v}=(-\sin v \cos u,-\sin v \sin u,-\cos v+1 / \cos v)
$$

as the derivative of g with $g(v)=-\sin v+\log \tan (\pi / 4+v / 2)$ is

$$
\begin{aligned}
g^{\prime}(v) & =-\cos v+\frac{1}{2}\left(\tan \left(\frac{\pi}{4}+\frac{v}{2}\right)\right)^{-1} \tan ^{\prime}\left(\frac{\pi}{4}+\frac{v}{2}\right) \\
& =-\cos v+\frac{\cos (\pi / 4+v / 2)}{2 \sin (\pi / 4+v / 2) \cos ^{2}(\pi / 4+v / 2)} \\
& =-\cos v+\frac{1}{\sin (\pi / 2+v)} \\
& =-\cos v+\frac{1}{\cos v}=\frac{-\cos ^{2} v+1}{\cos v}=\frac{\sin ^{2} v}{\cos v}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
E(u, v) & =\cos ^{2} v, \quad F(u, v)=0 \\
G(u, v) & =\sin ^{2} v+\left(\frac{1}{\cos v}-\cos v\right)^{2} \\
& =1-\cos ^{2} v+\frac{1}{\cos ^{2} v}-2+\cos ^{2} v \\
& =\frac{1}{\cos ^{2} v}-1=\frac{1-\cos ^{2} v}{\cos ^{2} v}=\tan ^{2} v
\end{aligned}
$$

Let us now calculate the coefficients w.r.t. the parametrization $\widetilde{\boldsymbol{x}}$ (make sure you use the arguments of the functions correctly):

$$
\begin{aligned}
f_{u}(u, v)=\widetilde{\boldsymbol{x}}_{u}(u, v) & =2 \boldsymbol{x}_{u}(2 u, \arccos (\cos v / 2)) \\
f_{v}(u, v)=\widetilde{\boldsymbol{x}}_{v}(u, v) & =\varphi^{\prime}(v) \boldsymbol{x}_{v}(2 u, \arccos ((\cos v) / 2)) \\
& =\frac{\sin v}{2 \sqrt{1-\left(\cos ^{2} v\right) / 4}} \boldsymbol{x}_{v}(2 u, \arccos ((\cos v) / 2))
\end{aligned}
$$

since the derivative of φ given by $\varphi(v)=\arccos ((\cos v) / 2)$ is

$$
\varphi^{\prime}(v)=\frac{1}{2}(-\sin v) \arccos ^{\prime}((\cos v) / 2)=\frac{\sin v}{2 \sqrt{1-\left(\cos ^{2} v\right) / 4}}
$$

In particular,

$$
\begin{aligned}
\left\langle f_{u}(u, v), f_{u}(u, v)\right\rangle & =\widetilde{E}(u, v) \\
\left\langle f_{u}(u, v), f_{v}(u, v)\right\rangle & =\widetilde{F}(u, v)=2 \varphi^{\prime}(v) F(\ldots)=0 \\
\left\langle f_{v}(u, v), f_{v}(u, v)\right\rangle & \left.=\widetilde{G}(u, v)=\frac{\sin ^{2} v}{4\left(1-\left(\cos ^{2} v\right) / 4\right)} G(2 u, \arccos v / 2)\right)
\end{aligned}
$$

Let us now simplify these expressions in order to obtain $E=\widetilde{E}$ and $G=\widetilde{G}(F=\widetilde{F}=0$ is aready clear $)$:

$$
\begin{aligned}
\widetilde{E}(u, v) & =4 E(2 u, \arccos (\cos v / 2)) \\
& \left.=4 \cos ^{2} \arccos (\cos v / 2)\right) \\
& =4(\cos v / 2)^{2}=\cos ^{2} v=E(u, v)
\end{aligned}
$$

as $\cos (\arccos z)=z$ for $z \in[-1,1]$.
Moreover,

$$
\begin{aligned}
\widetilde{G}(u, v) & =\frac{\sin ^{2} v}{4\left(1-\left(\cos ^{2} v\right) / 4\right)} G(2 u, \arccos (\cos v / 2)) \\
& =\frac{\sin ^{2} v}{4\left(1-\left(\cos ^{2} v\right) / 4\right)}\left(\frac{1}{\cos ^{2}(\arccos (\cos v / 2))}-1\right) \\
& =\frac{\sin ^{2} v}{4\left(1-\left(\cos ^{2} v\right) / 4\right)}\left(\frac{1}{\cos ^{2} v / 4}-1\right) \\
& =\frac{\sin ^{2} v}{4\left(1-\left(\cos ^{2} v\right) / 4\right)}\left(\frac{1-\cos ^{2} v / 4}{\cos ^{2} v / 4}\right) \\
& =\frac{\sin ^{2} v}{\cos ^{2} v}=G(u, v)
\end{aligned}
$$

(where we use the expression of $G(u, v)$ involving $\cos v$ only for the second equality).
Hence, by Proposition 8.15, f is a local isometry.
For f being an isometry, we also need that $f: S_{1} \longrightarrow S_{2}$ is a bijection: Basically, we map $(u, v) \in U_{1}=$ $(0, \pi) \times(0, \pi / 2)$ onto $\Phi(u, v):=(2 u, \arccos ((\cos v) / 2)) \in U_{2}=(0,2 \pi) \times(\pi / 3, \pi / 2)$, and as

$$
\psi:(0, \pi) \longrightarrow(0,2 \pi), \quad \psi(u)=2 u
$$

and

$$
\varphi:(0, \pi / 2) \longrightarrow(\pi / 3, \pi / 2), \quad \varphi(v)=\arccos ((\cos v) / 2)
$$

are both bijections, $\Phi: U_{1} \longrightarrow U_{2}$ is a bijection and hence also $f=\boldsymbol{x} \circ \Phi \circ \boldsymbol{x}^{-1}$.

