
Durham University
Pavel Tumarkin

Epiphany 2017

Differential Geometry III, Solutions 2 (Week 12)

Isometries and conformal maps - 2

2.1. (?) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an
isometry of S.

Solution:

Let S be parametrised by x : U −→ S with

x(u, v) = (f(v) cosu, f(v) sinu, g(v))

and U = (−π, π) × J or U = (0, 2π) × J , where f : J −→ (0,∞) and g : J −→ R are the functions of the
generating curve given by v 7→ (f(v), 0, g(v)). We know that

E(u, v) = f(v)2, F (u, v) = 0, G(u, v) = f ′(v)2 + g′(v)2

The rotation R by an angle ϑ around the symmetry axis is define by

R(x(u, v)) = x(u+ ϑ, v)

(for appropriate parameter values (u, v) ∈ U such that (u+ ϑ, v) ∈ U). Then we have

Ru(u, v) = (R ◦ x)u(u, v) = xu(u+ ϑ, v)

Rv(u, v) = (R ◦ x)v(u, v) = xv(u+ ϑ, v),

hence

Ẽ(u, v) = 〈Ru(u, v), Ru(u, v)〉 = xu(u+ ϑ, v) · xu(u+ ϑ, v) = E(u+ ϑ, v) = f(v)2

= E(u, v)

F̃ (u, v) = 〈Ru(u, v), Rv(u, v)〉 = xu(u+ ϑ, v) · xv(u+ ϑ, v) = 0 = F (u, v)

G̃(u, v) = 〈Rv(u, v), Rv(u, v)〉 = xv(u+ ϑ, v) · xv(u+ ϑ, v)

= G(u+ ϑ, v) = f ′(v)2 + g′(v)2 = G(u, v)

(in other words, the coefficients do not depend on the angle variable u).

Hence, f is a local isometry. Moreover, R = Rϑ : S −→ S is obviously a bijection, so it is a global isometry.

Alternatively, one can note that R = Rϑ : R3 −→ R3 is a linear orthogonal map, so its differential dpRϑ = Rϑ

preserves lengths of all tangent (to R3) vectors. This means that Rϑ is a global isometry of any surface onto
its image. Now, since Rϑ(S) = S, Rϑ is a global isometry of S.

2.2. The disc model of the hyperbolic plane.
Let D denote the unit disc {(x, y) ∈ R2 |x2 + y2 < 1} with first fundamental form

Ẽ = G̃ =
4

(1− x2 − y2)2
, F̃ = 0.

Let H be the hyperbolic plane with coordinates (u, v) ∈ R× (0,∞) and first fundamental form

E = G =
1

v2
, F = 0.



Show that the map f : H −→ D given by

f(z) =
z − i

z + i
, z = u+ iv ∈ H,

is an isometry.

Solution: We can consider (x, y) = (Re(f), Im(f)) as a coordinate system on D (the bijectivity can be checked
easily, please also check that the differential is non-degenerate everywhere).

If we take a tangent vector w = (a, b) ∈ T(u,v)H, then the square of its length is equal to

〈w,w〉(u,v) =
(
a b

)(E(u, v) F (u, v)
F (u, v) G(u, v)

)(
a
b

)
= a2E + 2abF + b2G =

a2 + b2

v2
=
〈w,w〉Eucl

v2

by the definition of the coefficients of the first fundamental form, where 〈w,w〉Eucl is the Euclidean dot
product.

The differential of f can be written as

d(u,v)f =

(
∂x(u,v)

∂u
∂x(u,v)

∂v
∂y(u,v)

∂u
∂y(u,v)

∂v

)
,=
(
fu fv

)
,

where

fu =

(
∂x(u,v)

∂u
∂y(u,v)

∂u

)
= d(u,v)f((1, 0)), fv =

(
∂x(u,v)

∂v
∂y(u,v)

∂v

)
= d(u,v)f((0, 1)).

Then

d(u,v)f(w) =

(
∂x(u,v)

∂u
∂x(u,v)

∂v
∂y(u,v)

∂u
∂y(u,v)

∂v

)(
a
b

)
= afu + bfv.

The square of the length of d(u,v)f(w) is then can be computed as

〈d(u,v)f(w), d(u,v)f(w)〉f(u,v) = (d(u,v)f(w))T

(
Ẽ(u, v) F̃ (u, v)

F̃ (u, v) G̃(u, v)

)
(d(u,v)f(w)) =

4〈d(u,v)f(w), d(u,v)f(w)〉Eucl

(1− x2 − y2)2
=

4

(1− x2 − y2)2
(a2〈fu,fu〉Eucl + 2ab〈fu,fv〉Eucl + b2〈fv,fv〉Eucl).

To show that f is an isometry, We need to show that 〈w,w〉(u,v) = 〈d(u,v)f(w), d(u,v)f(w)〉f(u,v).
Writing

x+ iy = f(u+ iv)

=
u+ iv − i
u+ iv + i

=
(u+ iv − i)(u− iv − i)

u2 + (v + 1)2

=
u2 + v2 − 1

u2 + (v + 1)2
+ i

−2u

u2 + (v + 1)2
,

we have

f(u, v) = (x(u, v), y(u, v)) =
1

u2 + (v + 1)2
(u2 + v2 − 1,−2u).

In particular, we can calculate that

1− x2 − y2 = 1− (u2 + v2 − 1)2 + (−2u)2

(u2 + (v + 1)2)2
=

4v

u2 + (v + 1)2
.

Taking partial derivatives gives

fu =
1

(u2 + (v + 1)2)2
(4u(v + 1), 2u2 − 2(v + 1)2),

fv =
1

(u2 + (v + 1)2)2
(−2u2 + 2(v + 1)2, 4u(v + 1)).



Computing the (Euclidean) inner products of the vectors above, we obtain

fu · fu =
4

(u2 + (v + 1)2)4
(4u2(v + 1)2 + (u2 − (v + 1)2)2) =

4

(u2 + (v + 1)2)2
,

fu · fv = 0,

fv · fv =
4

(u2 + (v + 1)2)2
.

Therefore,

4
fu · fu

(1− x2 − y2)2
= 4

4
(u2+(v+1)2)2(

4v
u2+(v+1)2

)2 =
1

v2
= E,

4
fu · fv

(1− x2 − y2)2
= 0 = F,

4
fv · fv

(1− x2 − y2)2
=

1

v2
= G,

and thus
〈d(u,v)f(w), d(u,v)f(w)〉f(u,v) = a2E + 2abF + b2G = 〈w,w〉(u,v)

(compare to Proposition 8.15 from the lectures).

2.3. Hyperboloid model of the hyperbolic plane.
Let Q : R3 → R be the quadratic form defined by

Q(x1, x2, x3) = x21 + x22 − x23, (x1, x2, x3) ∈ R3

(the quadratic space (R3, Q) is usually denoted by R2,1). Let

S = {(x1, x2, x3) ∈ R3 |Q(x1, x2, x3) = −1}

(i.e. S is a hyperboloid of two sheets).

Recall that the induced quadratic form Ip on each tangent plane TpS is defined by Ip(w) = Q(w)
for every w ∈ Tp(S). Show that Ip is positive definite and that the map f : D → S from the disc
model of the hyperbolic plane (see the previous exercise) defined by

f(x, y) =
1

1− x2 − y2
(2x, 2y, 1 + x2 + y2), (x, y) ∈ D,

maps D isometrically onto the component of S for which x3 > 0.

Solution:

Note that f is parametrization of the “upper” part of S (please check bijectivity!). In particular,

fx =
2

(1− x2 − y2)2
((1 + x2 − y2), 2xy, 2x),

fy =
2

(1− x2 − y2)2
(2xy, (1− x2 + y2), 2y),

which implies that

Ẽ = Q(fx) =
4

(1− x2 − y2)4
((1 + x2 − y2)2 + (2xy)2 − (2x)2) =

4

(1− x2 − y2)2
= E,

F̃ = 0,

G̃ = Q(fy) =
4

(1− x2 − y2)2
= G.


