Differential Geometry III, Solutions 2 (Week 12)

Isometries and conformal maps - 2

2.1. (*) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an isometry of S.

Solution:

Let S be parametrised by $\boldsymbol{x} \colon U \longrightarrow S$ with

 $\boldsymbol{x}(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$

and $U = (-\pi, \pi) \times J$ or $U = (0, 2\pi) \times J$, where $f: J \longrightarrow (0, \infty)$ and $g: J \longrightarrow \mathbb{R}$ are the functions of the generating curve given by $v \mapsto (f(v), 0, g(v))$. We know that

$$E(u, v) = f(v)^2$$
, $F(u, v) = 0$, $G(u, v) = f'(v)^2 + g'(v)^2$

The rotation R by an angle ϑ around the symmetry axis is define by

$$R(\boldsymbol{x}(u,v)) = \boldsymbol{x}(u+\vartheta,v)$$

(for appropriate parameter values $(u, v) \in U$ such that $(u + \vartheta, v) \in U$). Then we have

$$\begin{aligned} R_u(u,v) &= (R \circ \boldsymbol{x})_u(u,v) = \boldsymbol{x}_u(u+\vartheta,v) \\ R_v(u,v) &= (R \circ \boldsymbol{x})_v(u,v) = \boldsymbol{x}_v(u+\vartheta,v), \end{aligned}$$

hence

 \sim

$$E(u,v) = \langle R_u(u,v), R_u(u,v) \rangle = \mathbf{x}_u(u+\vartheta,v) \cdot \mathbf{x}_u(u+\vartheta,v) = E(u+\vartheta,v) = f(v)^2$$
$$= E(u,v)$$
$$\widetilde{F}(u,v) = \langle R_u(u,v), R_v(u,v) \rangle = \mathbf{x}_u(u+\vartheta,v) \cdot \mathbf{x}_v(u+\vartheta,v) = 0 = F(u,v)$$
$$\widetilde{G}(u,v) = \langle R_v(u,v), R_v(u,v) \rangle = \mathbf{x}_v(u+\vartheta,v) \cdot \mathbf{x}_v(u+\vartheta,v)$$
$$= G(u+\vartheta,v) = f'(v)^2 + g'(v)^2 = G(u,v)$$

(in other words, the coefficients do not depend on the angle variable u).

Hence, f is a local isometry. Moreover, $R = R_{\vartheta} \colon S \longrightarrow S$ is obviously a bijection, so it is a global isometry.

Alternatively, one can note that $R = R_{\vartheta} \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is a linear orthogonal map, so its differential $d_p R_{\vartheta} = R_{\vartheta}$ preserves lengths of all tangent (to \mathbb{R}^3) vectors. This means that R_{ϑ} is a global isometry of any surface onto its image. Now, since $R_{\vartheta}(S) = S$, R_{ϑ} is a global isometry of S.

2.2. The disc model of the hyperbolic plane.

Let \mathbb{D} denote the unit disc $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with first fundamental form

$$\widetilde{E} = \widetilde{G} = \frac{4}{(1 - x^2 - y^2)^2}, \quad \widetilde{F} = 0.$$

Let \mathbb{H} be the hyperbolic plane with coordinates $(u, v) \in \mathbb{R} \times (0, \infty)$ and first fundamental form

$$E = G = \frac{1}{v^2}, \quad F = 0.$$

Show that the map $f \colon \mathbb{H} \longrightarrow \mathbb{D}$ given by

$$f(z) = \frac{z - \mathrm{i}}{z + \mathrm{i}}, \qquad z = u + \mathrm{i}v \in \mathbb{H},$$

is an isometry.

Solution: We can consider (x, y) = (Re(f), Im(f)) as a coordinate system on \mathbb{D} (the bijectivity can be checked easily, please also check that the differential is non-degenerate everywhere).

If we take a tangent vector $\boldsymbol{w} = (a, b) \in T_{(u,v)}\mathbb{H}$, then the square of its length is equal to

$$\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} E(u,v) & F(u,v) \\ F(u,v) & G(u,v) \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a^2 E + 2abF + b^2 G = \frac{a^2 + b^2}{v^2} = \frac{\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{\text{Eucl}}}{v^2}$$

by the definition of the coefficients of the first fundamental form, where $\langle w, w \rangle_{\text{Eucl}}$ is the Euclidean dot product.

The differential of f can be written as

$$d_{(u,v)}\boldsymbol{f} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} & \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial u} & \frac{\partial y(u,v)}{\partial v} \end{pmatrix}, = \begin{pmatrix} \boldsymbol{f}_u & \boldsymbol{f}_v \end{pmatrix},$$

where

$$\boldsymbol{f}_{u} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} \\ \frac{\partial y(u,v)}{\partial u} \end{pmatrix} = d_{(u,v)}\boldsymbol{f}((1,0)), \qquad \boldsymbol{f}_{v} = \begin{pmatrix} \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial v} \end{pmatrix} = d_{(u,v)}\boldsymbol{f}((0,1)).$$

Then

$$d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) = \begin{pmatrix} \frac{\partial x(u,v)}{\partial u} & \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial u} & \frac{\partial y(u,v)}{\partial v} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a\boldsymbol{f}_u + b\boldsymbol{f}_v$$

The square of the length of $d_{(u,v)} f(w)$ is then can be computed as

$$\begin{split} \langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)} &= (d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}))^T \begin{pmatrix} \widetilde{E}(u,v) & \widetilde{F}(u,v) \\ \widetilde{F}(u,v) & \widetilde{G}(u,v) \end{pmatrix} (d_{(u,v)}\boldsymbol{f}(\boldsymbol{w})) = \\ \frac{4\langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\text{Eucl}}}{(1-x^2-y^2)^2} &= \frac{4}{(1-x^2-y^2)^2} (a^2 \langle \boldsymbol{f}_u, \boldsymbol{f}_u \rangle_{\text{Eucl}} + 2ab \langle \boldsymbol{f}_u, \boldsymbol{f}_v \rangle_{\text{Eucl}} + b^2 \langle \boldsymbol{f}_v, \boldsymbol{f}_v \rangle_{\text{Eucl}}). \end{split}$$

To show that \boldsymbol{f} is an isometry, We need to show that $\langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)} = \langle d_{(u,v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u,v)} \boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)}$. Writing

we have

$$\boldsymbol{f}(u,v) = (x(u,v), y(u,v)) = \frac{1}{u^2 + (v+1)^2} (u^2 + v^2 - 1, -2u).$$

In particular, we can calculate that

$$1 - x^{2} - y^{2} = 1 - \frac{(u^{2} + v^{2} - 1)^{2} + (-2u)^{2}}{(u^{2} + (v+1)^{2})^{2}} = \frac{4v}{u^{2} + (v+1)^{2}}.$$

Taking partial derivatives gives

$$\begin{aligned} \boldsymbol{f}_u &= \frac{1}{(u^2 + (v+1)^2)^2} (4u(v+1), 2u^2 - 2(v+1)^2), \\ \boldsymbol{f}_v &= \frac{1}{(u^2 + (v+1)^2)^2} (-2u^2 + 2(v+1)^2, 4u(v+1)). \end{aligned}$$

Computing the (Euclidean) inner products of the vectors above, we obtain

$$\begin{aligned} \boldsymbol{f}_{u} \cdot \boldsymbol{f}_{u} &= \frac{4}{(u^{2} + (v+1)^{2})^{4}} (4u^{2}(v+1)^{2} + (u^{2} - (v+1)^{2})^{2}) &= \frac{4}{(u^{2} + (v+1)^{2})^{2}} \\ \boldsymbol{f}_{u} \cdot \boldsymbol{f}_{v} &= 0, \\ \boldsymbol{f}_{v} \cdot \boldsymbol{f}_{v} &= \frac{4}{(u^{2} + (v+1)^{2})^{2}}. \end{aligned}$$

Therefore,

$$\begin{split} 4\frac{\boldsymbol{f}_{u}\cdot\boldsymbol{f}_{u}}{(1-x^{2}-y^{2})^{2}} &= 4\frac{\frac{4}{(u^{2}+(v+1)^{2})^{2}}}{\left(\frac{4v}{u^{2}+(v+1)^{2}}\right)^{2}} = \frac{1}{v^{2}} \quad = \quad E,\\ 4\frac{\boldsymbol{f}_{u}\cdot\boldsymbol{f}_{v}}{(1-x^{2}-y^{2})^{2}} &= 0 \quad = \quad F,\\ 4\frac{\boldsymbol{f}_{v}\cdot\boldsymbol{f}_{v}}{(1-x^{2}-y^{2})^{2}} &= \frac{1}{v^{2}} \quad = \quad G, \end{split}$$

and thus

 $\langle d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}), d_{(u,v)}\boldsymbol{f}(\boldsymbol{w}) \rangle_{\boldsymbol{f}(u,v)} = a^2 E + 2abF + b^2 G = \langle \boldsymbol{w}, \boldsymbol{w} \rangle_{(u,v)}$

(compare to Proposition 8.15 from the lectures).

2.3. Hyperboloid model of the hyperbolic plane.

Let $Q: \mathbb{R}^3 \to \mathbb{R}$ be the quadratic form defined by

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2, \qquad (x_1, x_2, x_3) \in \mathbb{R}^3$$

(the quadratic space (\mathbb{R}^3, Q) is usually denoted by $\mathbb{R}^{2,1}$). Let

$$S = \{ (x_1, x_2, x_3) \in \mathbb{R}^3 \, | \, Q(x_1, x_2, x_3) = -1 \}$$

(i.e. S is a hyperboloid of two sheets).

Recall that the *induced quadratic form* I_p on each tangent plane T_pS is defined by $I_p(w) = Q(w)$ for every $w \in T_p(S)$. Show that I_p is positive definite and that the map $f : \mathbb{D} \to S$ from the disc model of the hyperbolic plane (see the previous exercise) defined by

$$\boldsymbol{f}(x,y) = \frac{1}{1 - x^2 - y^2} \, (2x, 2y, 1 + x^2 + y^2), \qquad (x,y) \in \mathbb{D},$$

maps \mathbb{D} isometrically onto the component of S for which $x_3 > 0$.

Solution:

Note that f is parametrization of the "upper" part of S (please check bijectivity!). In particular,

$$\begin{array}{lll} {\pmb f}_x &=& \frac{2}{(1-x^2-y^2)^2} \, ((1+x^2-y^2), 2xy, 2x), \\ {\pmb f}_y &=& \frac{2}{(1-x^2-y^2)^2} \, (2xy, (1-x^2+y^2), 2y), \end{array}$$

which implies that

$$\begin{split} \widetilde{E} &= Q(\boldsymbol{f}_x) = \frac{4}{(1-x^2-y^2)^4} \left((1+x^2-y^2)^2 + (2xy)^2 - (2x)^2 \right) = \frac{4}{(1-x^2-y^2)^2} = E, \\ \widetilde{F} &= 0, \\ \widetilde{G} &= Q(\boldsymbol{f}_y) = \frac{4}{(1-x^2-y^2)^2} = G. \end{split}$$