Differential Geometry III, Solutions 2 (Week 12)

Isometries and conformal maps - 2

2.1. (\star) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an isometry of S.

Solution:

Let S be parametrised by $\boldsymbol{x}: U \longrightarrow S$ with

$$
\boldsymbol{x}(u, v)=(f(v) \cos u, f(v) \sin u, g(v))
$$

and $U=(-\pi, \pi) \times J$ or $U=(0,2 \pi) \times J$, where $f: J \longrightarrow(0, \infty)$ and $g: J \longrightarrow \mathbb{R}$ are the functions of the generating curve given by $v \mapsto(f(v), 0, g(v))$. We know that

$$
E(u, v)=f(v)^{2}, \quad F(u, v)=0, \quad G(u, v)=f^{\prime}(v)^{2}+g^{\prime}(v)^{2}
$$

The rotation R by an angle ϑ around the symmetry axis is define by

$$
R(\boldsymbol{x}(u, v))=\boldsymbol{x}(u+\vartheta, v)
$$

(for appropriate parameter values $(u, v) \in U$ such that $(u+\vartheta, v) \in U)$. Then we have

$$
\begin{aligned}
R_{u}(u, v) & =(R \circ \boldsymbol{x})_{u}(u, v)=\boldsymbol{x}_{u}(u+\vartheta, v) \\
R_{v}(u, v) & =(R \circ \boldsymbol{x})_{v}(u, v)=\boldsymbol{x}_{v}(u+\vartheta, v)
\end{aligned}
$$

hence

$$
\begin{aligned}
\widetilde{E}(u, v)=\left\langle R_{u}(u, v), R_{u}(u, v)\right\rangle & =\boldsymbol{x}_{u}(u+\vartheta, v) \cdot \boldsymbol{x}_{u}(u+\vartheta, v)=E(u+\vartheta, v)=f(v)^{2} \\
& =E(u, v) \\
\widetilde{F}(u, v)=\left\langle R_{u}(u, v), R_{v}(u, v)\right\rangle & =\boldsymbol{x}_{u}(u+\vartheta, v) \cdot \boldsymbol{x}_{v}(u+\vartheta, v)=0=F(u, v) \\
\widetilde{G}(u, v)=\left\langle R_{v}(u, v), R_{v}(u, v)\right\rangle & =\boldsymbol{x}_{v}(u+\vartheta, v) \cdot \boldsymbol{x}_{v}(u+\vartheta, v) \\
& =G(u+\vartheta, v)=f^{\prime}(v)^{2}+g^{\prime}(v)^{2}=G(u, v)
\end{aligned}
$$

(in other words, the coefficients do not depend on the angle variable u).
Hence, f is a local isometry. Moreover, $R=R_{\vartheta}: S \longrightarrow S$ is obviously a bijection, so it is a global isometry.
Alternatively, one can note that $R=R_{\vartheta}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ is a linear orthogonal map, so its differential $d_{p} R_{\vartheta}=R_{\vartheta}$ preserves lengths of all tangent (to \mathbb{R}^{3}) vectors. This means that R_{ϑ} is a global isometry of any surface onto its image. Now, since $R_{\vartheta}(S)=S, R_{\vartheta}$ is a global isometry of S.

2.2. The disc model of the hyperbolic plane.

Let \mathbb{D} denote the unit disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ with first fundamental form

$$
\widetilde{E}=\widetilde{G}=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}, \quad \widetilde{F}=0
$$

Let \mathbb{H} be the hyperbolic plane with coordinates $(u, v) \in \mathbb{R} \times(0, \infty)$ and first fundamental form

$$
E=G=\frac{1}{v^{2}}, \quad F=0 .
$$

Show that the map $\boldsymbol{f}: \mathbb{H} \longrightarrow \mathbb{D}$ given by

$$
\boldsymbol{f}(z)=\frac{z-\mathrm{i}}{z+\mathrm{i}}, \quad z=u+\mathrm{i} v \in \mathbb{H}
$$

is an isometry.

Solution: We can consider $(x, y)=(\operatorname{Re}(\boldsymbol{f}), \operatorname{Im}(\boldsymbol{f}))$ as a coordinate system on \mathbb{D} (the bijectivity can be checked easily, please also check that the differential is non-degenerate everywhere).
If we take a tangent vector $\boldsymbol{w}=(a, b) \in T_{(u, v)} \mathbb{H}$, then the square of its length is equal to

$$
\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{(u, v)}=\left(\begin{array}{ll}
a & b
\end{array}\right)\left(\begin{array}{ll}
E(u, v) & F(u, v) \\
F(u, v) & G(u, v)
\end{array}\right)\binom{a}{b}=a^{2} E+2 a b F+b^{2} G=\frac{a^{2}+b^{2}}{v^{2}}=\frac{\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{\mathrm{Eucl}}}{v^{2}}
$$

by the definition of the coefficients of the first fundamental form, where $\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{\text {Eucl }}$ is the Euclidean dot product.
The differential of \boldsymbol{f} can be written as

$$
d_{(u, v)} \boldsymbol{f}=\left(\begin{array}{cc}
\frac{\partial x(u, v)}{\partial u} & \frac{\partial x(u, v)}{\partial v} \\
\frac{\partial y(u, v)}{\partial u} & \frac{\partial y(u, v)}{\partial v}
\end{array}\right),=\left(\begin{array}{ll}
\boldsymbol{f}_{u} & \boldsymbol{f}_{v}
\end{array}\right),
$$

where

$$
\boldsymbol{f}_{u}=\binom{\frac{\partial x(u, v)}{\partial u}}{\frac{\partial y(u, v)}{\partial u}}=d_{(u, v)} \boldsymbol{f}((1,0)), \quad \boldsymbol{f}_{v}=\binom{\frac{\partial x(u, v)}{\partial v}}{\frac{\partial y(u, v)}{\partial v}}=d_{(u, v)} \boldsymbol{f}((0,1)) .
$$

Then

$$
d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})=\left(\begin{array}{cc}
\frac{\partial x(u, v)}{\partial u} & \frac{\partial x(u, v)}{\partial v} \\
\frac{\partial y(u, v)}{\partial u} & \frac{\partial y(u, v)}{\partial v}
\end{array}\right)\binom{a}{b}=a \boldsymbol{f}_{u}+b \boldsymbol{f}_{v} .
$$

The square of the length of $d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})$ is then can be computed as

$$
\begin{aligned}
& \left\langle d_{(u, v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right\rangle_{\boldsymbol{f}(u, v)}=\left(d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right)^{T}\left(\begin{array}{cc}
\widetilde{E}(u, v) & \widetilde{F}(u, v) \\
\widetilde{F}(u, v) & \widetilde{G}(u, v)
\end{array}\right)\left(d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right)= \\
& \quad \frac{4\left\langle d_{(u, v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right\rangle_{\mathrm{Eucl}}}{\left(1-x^{2}-y^{2}\right)^{2}}=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}\left(a^{2}\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{u}\right\rangle_{\mathrm{Eucl}}+2 a b\left\langle\boldsymbol{f}_{u}, \boldsymbol{f}_{v}\right\rangle_{\mathrm{Eucl}}+b^{2}\left\langle\boldsymbol{f}_{v}, \boldsymbol{f}_{v}\right\rangle_{\mathrm{Eucl}}\right) .
\end{aligned}
$$

To show that \boldsymbol{f} is an isometry, We need to show that $\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{(u, v)}=\left\langle d_{(u, v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right\rangle_{\boldsymbol{f}(u, v)}$.
Writing

$$
\begin{aligned}
x+i y & =\boldsymbol{f}(u+i v) \\
& =\frac{u+i v-i}{u+i v+i} \\
& =\frac{(u+i v-i)(u-i v-i)}{u^{2}+(v+1)^{2}} \\
& =\frac{u^{2}+v^{2}-1}{u^{2}+(v+1)^{2}}+i \frac{-2 u}{u^{2}+(v+1)^{2}}
\end{aligned}
$$

we have

$$
\boldsymbol{f}(u, v)=(x(u, v), y(u, v))=\frac{1}{u^{2}+(v+1)^{2}}\left(u^{2}+v^{2}-1,-2 u\right)
$$

In particular, we can calculate that

$$
1-x^{2}-y^{2}=1-\frac{\left(u^{2}+v^{2}-1\right)^{2}+(-2 u)^{2}}{\left(u^{2}+(v+1)^{2}\right)^{2}}=\frac{4 v}{u^{2}+(v+1)^{2}}
$$

Taking partial derivatives gives

$$
\begin{aligned}
\boldsymbol{f}_{u} & =\frac{1}{\left(u^{2}+(v+1)^{2}\right)^{2}}\left(4 u(v+1), 2 u^{2}-2(v+1)^{2}\right) \\
\boldsymbol{f}_{v} & =\frac{1}{\left(u^{2}+(v+1)^{2}\right)^{2}}\left(-2 u^{2}+2(v+1)^{2}, 4 u(v+1)\right)
\end{aligned}
$$

Computing the (Euclidean) inner products of the vectors above, we obtain

$$
\begin{aligned}
\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{u} & =\frac{4}{\left(u^{2}+(v+1)^{2}\right)^{4}}\left(4 u^{2}(v+1)^{2}+\left(u^{2}-(v+1)^{2}\right)^{2}\right)=\frac{4}{\left(u^{2}+(v+1)^{2}\right)^{2}}, \\
\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{v} & =0 \\
\boldsymbol{f}_{v} \cdot \boldsymbol{f}_{v} & =\frac{4}{\left(u^{2}+(v+1)^{2}\right)^{2}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
4 \frac{\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{u}}{\left(1-x^{2}-y^{2}\right)^{2}}=4 \frac{\frac{4}{\left(u^{2}+(v+1)^{2}\right)^{2}}}{\left(\frac{4 v}{u^{2}+(v+1)^{2}}\right)^{2}}=\frac{1}{v^{2}}=E \\
4 \frac{\boldsymbol{f}_{u} \cdot \boldsymbol{f}_{v}}{\left(1-x^{2}-y^{2}\right)^{2}}=0=F \\
4 \frac{\boldsymbol{f}_{v} \cdot \boldsymbol{f}_{v}}{\left(1-x^{2}-y^{2}\right)^{2}}=\frac{1}{v^{2}}=G
\end{aligned}
$$

and thus

$$
\left\langle d_{(u, v)} \boldsymbol{f}(\boldsymbol{w}), d_{(u, v)} \boldsymbol{f}(\boldsymbol{w})\right\rangle_{\boldsymbol{f}(u, v)}=a^{2} E+2 a b F+b^{2} G=\langle\boldsymbol{w}, \boldsymbol{w}\rangle_{(u, v)}
$$

(compare to Proposition 8.15 from the lectures).

2.3. Hyperboloid model of the hyperbolic plane.

Let $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the quadratic form defined by

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}, \quad\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

(the quadratic space $\left(\mathbb{R}^{3}, Q\right)$ is usually denoted by $\left.\mathbb{R}^{2,1}\right)$. Let

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid Q\left(x_{1}, x_{2}, x_{3}\right)=-1\right\}
$$

(i.e. S is a hyperboloid of two sheets).

Recall that the induced quadratic form $I_{\boldsymbol{p}}$ on each tangent plane $T_{\boldsymbol{p}} S$ is defined by $I_{\boldsymbol{p}}(\boldsymbol{w})=Q(\boldsymbol{w})$ for every $\boldsymbol{w} \in T_{\boldsymbol{p}}(S)$. Show that $I_{\boldsymbol{p}}$ is positive definite and that the map $f: \mathbb{D} \rightarrow S$ from the disc model of the hyperbolic plane (see the previous exercise) defined by

$$
\boldsymbol{f}(x, y)=\frac{1}{1-x^{2}-y^{2}}\left(2 x, 2 y, 1+x^{2}+y^{2}\right), \quad(x, y) \in \mathbb{D}
$$

maps \mathbb{D} isometrically onto the component of S for which $x_{3}>0$.

Solution:

Note that \boldsymbol{f} is parametrization of the "upper" part of S (please check bijectivity!). In particular,

$$
\begin{aligned}
\boldsymbol{f}_{x} & =\frac{2}{\left(1-x^{2}-y^{2}\right)^{2}}\left(\left(1+x^{2}-y^{2}\right), 2 x y, 2 x\right) \\
\boldsymbol{f}_{y} & =\frac{2}{\left(1-x^{2}-y^{2}\right)^{2}}\left(2 x y,\left(1-x^{2}+y^{2}\right), 2 y\right)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\widetilde{E} & =Q\left(\boldsymbol{f}_{x}\right)=\frac{4}{\left(1-x^{2}-y^{2}\right)^{4}}\left(\left(1+x^{2}-y^{2}\right)^{2}+(2 x y)^{2}-(2 x)^{2}\right)=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}=E \\
\widetilde{F} & =0 \\
\widetilde{G} & =Q\left(\boldsymbol{f}_{y}\right)=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}=G
\end{aligned}
$$

