Differential Geometry III, Homework 2 (Week 12)

Due date for starred problems: Thursday, February 2.

Isometries and conformal maps - 2

2.1. (\star) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an isometry of S.
2.2. The disc model of the hyperbolic plane.

Let \mathbb{D} denote the unit disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$ with first fundamental form

$$
\widetilde{E}=\widetilde{G}=\frac{4}{\left(1-x^{2}-y^{2}\right)^{2}}, \quad \widetilde{F}=0
$$

Let \mathbb{H} be the hyperbolic plane with coordinates $(u, v) \in \mathbb{R} \times(0, \infty)$ and first fundamental form

$$
E=G=\frac{1}{v^{2}}, \quad F=0 .
$$

Show that the map $f: \mathbb{H} \longrightarrow \mathbb{D}$ given by

$$
f(z)=\frac{z-\mathrm{i}}{z+\mathrm{i}}, \quad z=u+\mathrm{i} v \in \mathbb{H},
$$

is an isometry.

2.3. Hyperboloid model of the hyperbolic plane.

Let $Q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the quadratic form defined by

$$
Q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}-x_{3}^{2}, \quad\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}
$$

(the quadratic space $\left(\mathbb{R}^{3}, Q\right)$ is usually denoted by $\mathbb{R}^{2,1}$). Let

$$
S=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid Q\left(x_{1}, x_{2}, x_{3}\right)=-1\right\}
$$

(i.e. S is a hyperboloid of two sheets).

Recall that the induced quadratic form I_{p} on each tangent plane $T_{p} S$ is defined by $I_{p}(\boldsymbol{w})=Q(\boldsymbol{w})$ for every $\boldsymbol{w} \in T_{\boldsymbol{p}}(S)$. Show that $I_{\boldsymbol{p}}$ is positive definite and that the map $f: \mathbb{D} \rightarrow S$ from the disc model of the hyperbolic plane (see the previous exercise) defined by

$$
f(x, y)=\frac{1}{1-x^{2}-y^{2}}\left(2 x, 2 y, 1+x^{2}+y^{2}\right), \quad(x, y) \in \mathbb{D}
$$

maps \mathbb{D} isometrically onto the component of S for which $x_{3}>0$.

