Differential Geometry III, Homework 2 (Week 12)

Due date for starred problems: Thursday, February 2.

Isometries and conformal maps - 2

- **2.1.** (*) Let S be a surface of revolution. Prove that any rotation about the axis of revolution is an isometry of S.
- 2.2. The disc model of the hyperbolic plane.

Let \mathbb{D} denote the unit disc $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ with first fundamental form

$$\widetilde{E} = \widetilde{G} = \frac{4}{(1 - x^2 - y^2)^2}, \quad \widetilde{F} = 0$$

Let \mathbb{H} be the hyperbolic plane with coordinates $(u, v) \in \mathbb{R} \times (0, \infty)$ and first fundamental form

$$E = G = \frac{1}{v^2}, \quad F = 0.$$

Show that the map $f \colon \mathbb{H} \longrightarrow \mathbb{D}$ given by

$$f(z) = \frac{z - \mathrm{i}}{z + \mathrm{i}}, \qquad z = u + \mathrm{i}v \in \mathbb{H},$$

is an isometry.

2.3. Hyperboloid model of the hyperbolic plane.

Let $Q: \mathbb{R}^3 \to \mathbb{R}$ be the quadratic form defined by

$$Q(x_1, x_2, x_3) = x_1^2 + x_2^2 - x_3^2, \qquad (x_1, x_2, x_3) \in \mathbb{R}^3$$

(the quadratic space (\mathbb{R}^3, Q) is usually denoted by $\mathbb{R}^{2,1}$). Let

$$S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \, | \, Q(x_1, x_2, x_3) = -1\}$$

(i.e. S is a hyperboloid of two sheets).

Recall that the *induced quadratic form* I_p on each tangent plane T_pS is defined by $I_p(w) = Q(w)$ for every $w \in T_p(S)$. Show that I_p is positive definite and that the map $f : \mathbb{D} \to S$ from the disc model of the hyperbolic plane (see the previous exercise) defined by

$$f(x,y) = \frac{1}{1 - x^2 - y^2} (2x, 2y, 1 + x^2 + y^2), \qquad (x,y) \in \mathbb{D},$$

maps \mathbb{D} isometrically onto the component of S for which $x_3 > 0$.