Differential Geometry III, Solutions 4 (Week 14)

Weingarten map, Gauss, mean and principal curvatures - 2

4.1. Let S be the surface given by the graph of the function $f: U \longrightarrow \mathbb{R}\left(U \subset \mathbb{R}^{2}\right.$ open $)$. Calculate the Gauss and mean curvature of S in terms of f and its derivatives.

Solution: We choose the standard parametrization for a graph of a function, i.e.,

$$
\boldsymbol{x}: U \longrightarrow S, \quad \boldsymbol{x}(u, v)=(u, v, f(u, v)),
$$

where $S=\{(u, v, f(u, v)) \mid(u, v) \in U\}$. Then we have

$$
\begin{aligned}
& \boldsymbol{x}_{u}=\left(1,0, f_{x}\right), \quad \boldsymbol{x}_{v}=\left(0,1, f_{y}\right), \quad \boldsymbol{x}_{u} \times \boldsymbol{x}_{v}=\left(-f_{x},-f_{y}, 1\right), \\
& \boldsymbol{x}_{u u}=\left(0,0, f_{x x}\right), \quad \boldsymbol{x}_{u v}=\left(0,0, f_{x y}\right), \quad \boldsymbol{x}_{v v}=\left(0,0, f_{y y}\right) .
\end{aligned}
$$

From this, we see that the normal vector is

$$
\boldsymbol{N}=\frac{1}{D}, \quad D=\sqrt{1+f_{x}^{2}+f_{y}^{2}}
$$

and we easily see that

$$
\begin{array}{lll}
E=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{u}=1+f_{x}^{2}, & F=\boldsymbol{x}_{u} \cdot \boldsymbol{x}_{v}=f_{x} f_{y}, & G=\boldsymbol{x}_{v} \cdot \boldsymbol{x}_{v}=1+f_{y}^{2}, \\
L=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}=\frac{f_{x x}}{D}, & M=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}=\frac{f_{x y}}{D}, & \boldsymbol{N}=\boldsymbol{x}_{v v} \cdot \boldsymbol{N}=\frac{f_{y y}}{D} .
\end{array}
$$

Note that we have

$$
E G-F^{2}=\left(1+f_{x}^{2}\right)\left(1+f_{y}^{2}\right)-f_{x}^{2} f_{y}^{2}=1+f_{x}^{2}+f_{y}^{2}=\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|^{2}=D^{2} .
$$

(observe that the equality $E G-F^{2}=\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|^{2}$ is always true, what is the geometrical meaning of this?) Now, the Gauss curvature is given by

$$
K=\frac{L N-M^{2}}{E G-F^{2}}=\frac{f_{x x} f_{y y}-f_{x y}^{2}}{D^{4}}=\frac{\operatorname{det} H(f)}{D^{4}}, \quad \text { where } \quad H(f)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right)
$$

is the Hessian matrix of f. Moreover, the mean curvature is given by

$$
H=\frac{E N-2 F M+G L}{E G-F^{2}}=\frac{\left(1+f_{x}^{2}\right) f_{y y}-2 f_{x} f_{y} f_{x y}+\left(f_{y}^{2}+1\right) f_{x x}}{D^{3}} .
$$

4.2. (*) Enneper's surface

Consider the surface in \mathbb{R}^{3} parametrized by

$$
\boldsymbol{x}(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+u^{2} v, u^{2}-v^{2}\right), \quad(u, v) \in \mathbb{R}^{2} .
$$

Show that
(a) the coefficients of the first and second fundamental forms are given by

$$
E(u, v)=G(u, v)=\left(1+u^{2}+v^{2}\right)^{2}, F(u, v)=0 \quad \text { and } \quad L=2, M=0, N=-2
$$

(b) the principal curvatures at $p=\boldsymbol{x}(u, v)$ are given by

$$
\kappa_{1}(p)=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}, \quad \kappa_{2}(p)=-\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}
$$

Solution:

(a) We have

$$
\boldsymbol{x}_{u}(u, v)=\left(1-u^{2}+v^{2}, 2 u v, 2 u\right), \quad \boldsymbol{x}_{v}(u, v)=\left(2 u v, 1+u^{2}-v^{2},-2 v\right)
$$

so that the coefficients of the first fundamental form are

$$
\begin{aligned}
& E(u, v)=\left(1-u^{2}+v^{2}\right)^{2}+4 u v^{2}+4 u^{2}=\left(1+u^{2}+v^{2}\right)^{2} \\
& F(u, v)=2 u v\left(1-u^{2}+v^{2}\right)+2 u v\left(1+u^{2}-v^{2}\right)-4 u v=0 \\
& G(u, v)=4 u^{2} v^{2}+\left(1+u^{2}-v^{2}\right)^{2}+4 v^{2}=\left(1+u^{2}+v^{2}\right)^{2}
\end{aligned}
$$

as desired. Moreover, we have

$$
\boldsymbol{x}_{u u}(u, v)=(-2 u, 2 v, 2), \quad \boldsymbol{x}_{u v}(u, v)=(2 v, 2 u, 0), \quad \boldsymbol{x}_{v v}(u, v)=(2 u,-2 v,-2)
$$

and

$$
\begin{aligned}
\boldsymbol{x}_{u}(u, v) \times \boldsymbol{x}_{v}(u, v) & =\left(\begin{array}{c}
1-u^{2}+v^{2} \\
2 u v \\
2 u
\end{array}\right) \times\left(\begin{array}{c}
1+u^{2}-v^{2} \\
2 u v \\
2 v
\end{array}\right) \\
& =\left(\begin{array}{c}
-2 u\left(1+u^{2}+v^{2}\right) \\
2 v\left(1+u^{2}+v^{2}\right) \\
\left(1-u^{2}-v^{2}\right)\left(1+u^{2}+v^{2}\right)
\end{array}\right)=\left(1+u^{2}+v^{2}\right)\left(\begin{array}{c}
-2 u \\
2 v \\
1-u^{2}-v^{2}
\end{array}\right)
\end{aligned}
$$

and $\left\|\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}\right\|^{2}=E G-F^{2}=\left(1+u^{2}+v^{2}\right)^{4}$, so that the normal vector is

$$
\boldsymbol{N}(\boldsymbol{x}(u, v))=\frac{1}{1+u^{2}+v^{2}}\left(\begin{array}{c}
-2 u \\
2 v \\
1-u^{2}-v^{2}
\end{array}\right)
$$

In particular, the coefficients of the second fundamental form are

$$
\begin{aligned}
& L(u, v)=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}(\boldsymbol{x}(u, v))=\frac{4 u^{2}+4 v^{2}+2\left(1-u^{2}-v^{2}\right)}{1+u^{2}+v^{2}}=2 \\
& M(u, v)=\boldsymbol{x}_{u v} \cdot \boldsymbol{N}(\boldsymbol{x}(u, v))=\frac{-4 u v+4 u v}{1+u^{2}+v^{2}}=0 \\
& N(u, v)=\boldsymbol{x}_{u u} \cdot \boldsymbol{N}(\boldsymbol{x}(u, v))=\frac{-4 u^{2}-4 v^{2}-2\left(1-u^{2}-v^{2}\right)}{1+u^{2}+v^{2}}=-2
\end{aligned}
$$

again as desired.
(b) Let us first find the Gauss and mean curvature:

$$
\begin{aligned}
K & =\frac{L N-M^{2}}{E G-F^{2}}=\frac{-4}{\left(1+u^{2}+v^{2}\right)^{4}} \quad \text { and } \\
H & =\frac{E N-2 F M+G L}{E G-F^{2}}=\frac{(-2+2)\left(1+u^{2}+v^{2}\right)^{2}}{\left(1+u^{2}+v^{2}\right)^{4}}=0
\end{aligned}
$$

hence the principal curvatures are the solutions of $\kappa^{2}-2 H \kappa+K=0$, i.e., of

$$
\kappa^{2}=\frac{4}{\left(1+u^{2}+v^{2}\right)^{4}}, \quad \text { or } \quad \kappa= \pm \frac{2}{\left(1+u^{2}+v^{2}\right)^{2}},
$$

as desired.
Remark. Note that the mean curvature of the Enneper surface S vanishes, so it is a minimal surface.
4.3. If S is a surface in \mathbb{R}^{3} then a parallel surface to S is a surface \widetilde{S} given by a local parametrization of the form

$$
\boldsymbol{y}(u, v)=\boldsymbol{x}(u, v)+a \boldsymbol{N}(u, v), \quad(u, v) \in U,
$$

where $\boldsymbol{x}: U \longrightarrow S$ is a local parametrization of $S, \boldsymbol{N}: U \longrightarrow S^{2}$ the Gauss map in that parametrization, and a is some given constant.
(a) Show that

$$
\boldsymbol{y}_{u} \times \boldsymbol{y}_{v}=\left(1-2 H a+K a^{2}\right) \boldsymbol{x}_{u} \times \boldsymbol{x}_{v},
$$

where H and K are the mean and Gauss curvatures of S.
(b) Assuming that $\underset{\widetilde{S}}{1}-2 H a+K a^{2}$ is never zero on S, show that the Gauss curvature \widetilde{K} and mean curvature \widetilde{H} of \widetilde{S} are given by

$$
\widetilde{K}=\frac{K}{1-2 H a+K a^{2}}, \quad \widetilde{H}=\frac{H-K a}{1-2 H a+K a^{2}} .
$$

(c) If S has constant mean curvature $H \equiv c \neq 0$ and the Gauss curvature K is nowhere vanishing, show that the parallel surface given by $a=1 /(2 c)$ has constant Gauss curvature $4 c^{2}$.

Solution:

(a) First, note that

$$
\boldsymbol{y}_{u}=\boldsymbol{x}_{u}+a \boldsymbol{N}_{u}, \quad \text { and } \quad \boldsymbol{y}_{v}=\boldsymbol{x}_{u}+a \boldsymbol{N}_{v} .
$$

In order to express $\boldsymbol{y}_{u} \times \boldsymbol{y}_{v}$ in the desired form, it is helpful to express the derivative with respect to the basis $\left\{\boldsymbol{x}_{u}, \boldsymbol{x}_{v}\right\}$:

$$
\begin{aligned}
& -\boldsymbol{N}_{u}=-(\boldsymbol{N} \circ x)_{u}=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{u}\right)=A \boldsymbol{x}_{u}+B \boldsymbol{x}_{v} \quad \text { and } \\
& -\boldsymbol{N}_{v}=-(\boldsymbol{N} \circ x)_{v}=-d_{p} \boldsymbol{N}\left(\boldsymbol{x}_{v}\right)=C \boldsymbol{x}_{u}+D \boldsymbol{x}_{v}
\end{aligned}
$$

This is useful as we can express easily the Gauss and mean curvatures as the determinant and trace in terms of these coefficients as

$$
K=A D-B C \quad \text { and } \quad H=\frac{A+D}{2} .
$$

Now,

$$
\begin{aligned}
\boldsymbol{y}_{u} & =\boldsymbol{x}_{u}+a \boldsymbol{N}_{u}
\end{aligned}=\boldsymbol{x}_{u}+a(\boldsymbol{N} \circ \boldsymbol{x})_{u}=(1-a A) \boldsymbol{x}_{u}-a B \boldsymbol{x}_{v} \text { and }{ }^{\boldsymbol{y}_{v}}=\boldsymbol{x}_{v}+a \boldsymbol{N}_{v}=\boldsymbol{x}_{v}+a(\boldsymbol{N} \circ \boldsymbol{x})_{v}=-a C \boldsymbol{x}_{u}+(1-a D) \boldsymbol{x}_{v},
$$

and therefore

$$
\begin{aligned}
\boldsymbol{y}_{u} \times \boldsymbol{y}_{v} & =\left((1-a A) \boldsymbol{x}_{u}-a B \boldsymbol{x}_{v}\right) \times\left(-a C \boldsymbol{x}_{u}+(1-a D) \boldsymbol{x}_{v}\right) \\
& =\left((1-a A)(1-a D)-a^{2} B C\right) \boldsymbol{x}_{u} \times \boldsymbol{x}_{v} \\
& =\left(1-a(A+D)+a^{2}(A D-B C)\right) \boldsymbol{x}_{u} \times \boldsymbol{x}_{v} \\
& =\underbrace{\left(1-2 H a+K a^{2}\right)}_{=: P} \boldsymbol{x}_{u} \times \boldsymbol{x}_{v}
\end{aligned}
$$

using the antisymmetry of the vector product ($\boldsymbol{v} \times \boldsymbol{w}=-\boldsymbol{w} \times \boldsymbol{v}$ and $\boldsymbol{v} \times \boldsymbol{v}=\mathbf{0}$), and we obtain the desired formula.
(b) If $P:=1-2 H a+K a^{2} \neq 0$, then $\boldsymbol{y}_{u} \times \boldsymbol{y}_{v}$ is not vanishing, the normal vectors of S and \widetilde{S} fulfil

$$
\widetilde{\boldsymbol{N}} \circ \boldsymbol{y}=\boldsymbol{N} \circ \boldsymbol{x},
$$

as $\boldsymbol{y}_{u} \times \boldsymbol{y}_{v}$ and $\boldsymbol{x}_{u} \times \boldsymbol{x}_{v}$ point in the same direction by the first part and the condition on $1-2 \mathrm{Ha}+\mathrm{Ka}^{2}$. Remark. Be careful with the statement $\widetilde{\boldsymbol{N}}=\boldsymbol{N}$, as the parametrisation is lost in this espression. This becomes important when taking derivatives (see below).

Let us use the same trick as for the surface S also for \widetilde{S} :

$$
\begin{aligned}
&-\widetilde{\boldsymbol{N}}_{u}=-(\widetilde{\boldsymbol{N}} \circ y)_{u} \\
&=-d_{p} \widetilde{\boldsymbol{N}}\left(\boldsymbol{y}_{u}\right)=\widetilde{A} \boldsymbol{y}_{u}+\widetilde{B} \boldsymbol{y}_{v} \quad \text { and } \\
&-\widetilde{\boldsymbol{N}}_{v}=-(\widetilde{\boldsymbol{N}} \circ y)_{v}=-d_{p} \widetilde{\boldsymbol{N}}\left(\boldsymbol{y}_{v}\right)=\widetilde{C} \boldsymbol{y}_{u}+\widetilde{D} \boldsymbol{y}_{v} .
\end{aligned}
$$

Similarly as above, we have

$$
\widetilde{K}=\widetilde{A} \widetilde{D}-\widetilde{B} \widetilde{C} \quad \text { and } \quad \widetilde{H}=\frac{\widetilde{A}+\widetilde{D}}{2}
$$

Taking the derivative of the equation $\widetilde{\boldsymbol{N}} \circ \boldsymbol{y}=\boldsymbol{N} \circ \boldsymbol{x}$ and combining the previous results gives

$$
\begin{aligned}
A \boldsymbol{x}_{u}+B \boldsymbol{x}_{v}=-(\boldsymbol{N} \circ \boldsymbol{x})_{u} & =-(\widetilde{\boldsymbol{N}} \circ \boldsymbol{y})_{u} \\
& =\widetilde{A} \boldsymbol{y}_{u}+\widetilde{B} \boldsymbol{y}_{v} \\
& =\widetilde{A}\left((1-a A) \boldsymbol{x}_{u}-a B \boldsymbol{x}_{v}\right)+\widetilde{B}\left(-a C \boldsymbol{x}_{u}+(1-a D) \boldsymbol{x}_{v}\right) \\
& =(\widetilde{A}(1-a A)-\widetilde{B} a C) \boldsymbol{x}_{u}+(-\widetilde{A} a B+\widetilde{B}(1-a D)) \boldsymbol{x}_{v} .
\end{aligned}
$$

Comparing the coefficients gives the linear system

$$
\left(\begin{array}{cc}
1-a A & -a C \\
-a B & 1-a D
\end{array}\right)\binom{\widetilde{A}}{\widetilde{B}}=\binom{A}{B}
$$

for $(\widetilde{A}, \widetilde{B})$. The determinant of the coefficient matrix is

$$
(1-a A)(1-a D)-a^{2} B C=1-(A+D) a+(A D-B C) a^{2}=1-2 H a+K a^{2}=P \neq 0
$$

so that we can take the inverse and obtain

$$
\binom{\widetilde{A}}{\widetilde{B}}=\frac{1}{P}\left(\begin{array}{cc}
1-a D & a C \\
a B & 1-a A
\end{array}\right)\binom{A}{B}=\frac{1}{P}\binom{(1-a D) A+a C B}{a B A+(1-a A) B}=\frac{1}{P}\binom{A-a K}{B}
$$

Similarly, we have (taking the derivative w.r.t. v) that

$$
\begin{aligned}
C \boldsymbol{x}_{u}+D \boldsymbol{x}_{v}=-(\boldsymbol{N} \circ \boldsymbol{x})_{v} & =-(\widetilde{\boldsymbol{N}} \circ \boldsymbol{y})_{v} \\
& =\widetilde{C} \boldsymbol{y}_{u}+\widetilde{D} \boldsymbol{y}_{v} \\
& =\widetilde{C}\left((1-a A) \boldsymbol{x}_{u}-a B \boldsymbol{x}_{v}\right)+\widetilde{D}\left(-a C \boldsymbol{x}_{u}+(1-a D) \boldsymbol{x}_{v}\right) \\
& =(\widetilde{C}(1-a A)-\widetilde{D} a C) \boldsymbol{x}_{u}+(-\widetilde{C} a B+\widetilde{D}(1-a D)) \boldsymbol{x}_{v}
\end{aligned}
$$

Comparing the coefficients gives the linear system

$$
\left(\begin{array}{cc}
1-a A & -a C \\
-a B & 1-a D
\end{array}\right)\binom{\widetilde{C}}{\widetilde{D}}=\binom{C}{D}
$$

for $(\widetilde{B}, \widetilde{D})$, and as above, we obtain

$$
\binom{\widetilde{C}}{\widetilde{D}}=\frac{1}{P}\left(\begin{array}{cc}
1-a D & a C \\
a B & 1-a A
\end{array}\right)\binom{C}{D}=\frac{1}{P}\binom{(1-a D) C+a C D}{a B C+(1-a A) D}=\frac{1}{P}\binom{C}{D-a K} .
$$

Now, we have

$$
\widetilde{H}=\frac{1}{2}(\widetilde{A}+\widetilde{D})=\frac{1}{2 P}(A-a K+D-a K)=\frac{1}{P}(H-a K)=\frac{H-a K}{1-2 a H+a^{2} K}
$$

and

$$
\begin{aligned}
\widetilde{K}=\widetilde{A} \widetilde{D}-\widetilde{B} \widetilde{C} & =\frac{1}{P^{2}}((A-a K)(D-a K)-B C) \\
& =\frac{1}{P^{2}}(\underbrace{A D-B C}_{=K}-a(A+D) K+a^{2} K) \\
& =\frac{K\left(1-2 a H+a^{2} K\right)}{\left(1-2 a H+a^{2} K\right)^{2}}=\frac{K}{1-2 a H+a^{2} K}
\end{aligned}
$$

as claimed.
(c) If S has constant mean curvature $H=c \neq 0$ and $K \neq 0$, then

$$
\widetilde{K}=\frac{K}{1-2 a H+a^{2} K}=\frac{K}{1-2 c / 2 c+K / 4 c^{2}}=\frac{4 c^{2} K}{K}=4 c^{2}
$$

(and we have $P=1-2 a H+a^{2} K=K / 4 c^{2} \neq 0$ as $K \neq 0$).
4.4. Let f be a smooth real-valued function defined on a connected open subset U of \mathbb{R}^{2}.
(a) Show that the graph S of f is a minimal surface in \mathbb{R}^{3} (i.e., its mean curvature H vanishes) if and only if

$$
f_{y y}\left(1+f_{x}^{2}\right)-2 f_{x} f_{y} f_{x y}+f_{x x}\left(1+f_{y}^{2}\right)=0
$$

(b) Deduce that if $f(x, y)=g(x)$ then S is minimal if and only if S is a plane with normal vector parallel to the (x, z)-plane but not parallel to the x-axis.
(c) If $f(x, y)=g(x)+h(y)$, find the most general form of f in order for S to be minimal. Hint: Use separation of variables

Solution:

(a) Let us take the formulae for the mean curvature of a surface which is a graph of a function from Exercise 4.1 (feel free to repeat the calculations, it is a good exercise). We have

$$
H=\frac{E N-2 F M+G L}{E G-F^{2}}=\frac{\left(1+f_{x}^{2}\right) f_{y y}-2 f_{x} f_{y} f_{x y}+\left(f_{y}^{2}+1\right) f_{x x}}{D^{3}}
$$

where $D=\left(1+f_{x}^{2}+f_{y}^{2}\right)^{1 / 2}$. In particular, a surface is a minimal surface iff

$$
\left(1+f_{x}^{2}\right) f_{y y}-2 f_{x} f_{y} f_{x y}+\left(f_{y}^{2}+1\right) f_{x x}=0
$$

as desired.
(b) If $f(x, y)=g(x)$, then $f_{x}=g^{\prime}, f_{y}=0$, and the equation $H=0$ becomes just $g^{\prime \prime}=0$ (only the third summand is non-zero). In particular, $g(x)=a x+b$ for some constants $a, b \in \mathbb{R}$, i.e., f is the graph of a plane, and the normal vector of this plane is proportional to $(-a, 0,1)$, i.e., parallel to the (x, z)-plane, but not to the x-axis (as the z-component is never 0).
(c) If $f(x, y)=g(x)+h(y)$, we obtain

$$
f_{x}=g^{\prime}, \quad f_{y}=h^{\prime}, \quad f_{x x}=g^{\prime \prime}, \quad f_{x y}=0, \quad f_{y y}=h^{\prime \prime}
$$

so that the equation $H=0$ becomes

$$
\left(1+g^{\prime 2}\right) h^{\prime \prime}\left(h^{\prime 2}+1\right) g^{\prime \prime}=0, \quad \text { i.e. } \quad \frac{g^{\prime \prime}}{1+g^{\prime 2}}=-\frac{h^{\prime \prime}}{h^{2}+1}
$$

(separation of variables). Now, since the LHS depends on x only, while the RHS depends on y only, we have

$$
\frac{g^{\prime \prime}}{g^{\prime 2}+1}=c_{0}
$$

for some constant c_{0}. Integrating gives (substituting $s=g^{\prime}(x)$, i.e., $\left.\mathrm{d} s=g^{\prime \prime}(x) \mathrm{d} x\right)$

$$
\int \frac{1}{s^{2}+1} \mathrm{~d} s=c_{0} x+c_{1}, \quad \text { i.e. } \quad \arctan g^{\prime}(x)=c_{0} x+c_{1} \quad \text { or } \quad g^{\prime}(x)=\tan \left(c_{0} x+c_{1}\right)
$$

Integrating gives $g(x)=\log \left|\cos \left(c_{0} x+c_{1}\right)\right| / c_{0}+c_{2}$.
Similarly, $h(y)=-\log \left|\cos \left(-c_{0} y+c_{3}\right)\right| / c_{0}+c_{4}$. So the most general form of f is

$$
\begin{aligned}
f(x, y) & =\frac{1}{c_{0}} \log \left|\cos \left(c_{0} x+c_{1}\right)\right|-\frac{1}{c_{0}} \log \left|\cos \left(-c_{0} y+c_{3}\right)\right| / c_{0}+c_{5} \\
& =\frac{1}{c_{0}} \log \left|\frac{\cos \left(c_{0} x+c_{1}\right)}{\cos \left(-c_{0} y+c_{3}\right)}\right|+c_{5}
\end{aligned}
$$

where $c_{0}, c_{1}, c_{3}, c_{5}$ are constants.

