Differential Geometry III, Homework 4 (Week 14)

Due date for starred problems: Friday, February 17.

Weingarten map, Gauss, mean and principal curvatures - 2

4.1. Let S be the surface given by the graph of the function $f: U \longrightarrow \mathbb{R}\left(U \subset \mathbb{R}^{2}\right.$ open $)$. Calculate the Gauss and mean curvature of S in terms of f and its derivatives.

4.2. (\star) Enneper's surface

Consider the surface in \mathbb{R}^{3} parametrized by

$$
\boldsymbol{x}(u, v)=\left(u-\frac{u^{3}}{3}+u v^{2}, v-\frac{v^{3}}{3}+u^{2} v, u^{2}-v^{2}\right), \quad(u, v) \in \mathbb{R}^{2}
$$

Show that
(a) the coefficients of the first and second fundamental forms are given by

$$
E(u, v)=G(u, v)=\left(1+u^{2}+v^{2}\right)^{2}, F(u, v)=0 \quad \text { and } \quad L=2, M=0, N=-2
$$

(b) the principal curvatures at $p=\boldsymbol{x}(u, v)$ are given by

$$
\kappa_{1}(p)=\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}, \quad \kappa_{2}(p)=-\frac{2}{\left(1+u^{2}+v^{2}\right)^{2}}
$$

4.3. If S is a surface in \mathbb{R}^{3} then a parallel surface to S is a surface \widetilde{S} given by a local parametrization of the form

$$
\boldsymbol{y}(u, v)=\boldsymbol{x}(u, v)+a \boldsymbol{N}(u, v), \quad(u, v) \in U
$$

where $\boldsymbol{x}: U \longrightarrow S$ is a local parametrization of $S, \boldsymbol{N}: U \longrightarrow S^{2}$ the Gauss map in that parametrization, and a is some given constant.
(a) Show that

$$
\boldsymbol{y}_{u} \times \boldsymbol{y}_{v}=\left(1-2 H a+K a^{2}\right) \boldsymbol{x}_{u} \times \boldsymbol{x}_{v}
$$

where H and K are the mean and Gauss curvatures of S.
(b) Assuming that $\underset{\sim}{\sim}-2 H a+K a^{2}$ is never zero on S, show that the Gauss curvature \widetilde{K} and mean curvature \widetilde{H} of \widetilde{S} are given by

$$
\widetilde{K}=\frac{K}{1-2 H a+K a^{2}}, \quad \widetilde{H}=\frac{H-K a}{1-2 H a+K a^{2}}
$$

(c) If S has constant mean curvature $H \equiv c \neq 0$ and the Gauss curvature K is nowhere vanishing, show that the parallel surface given by $a=1 /(2 c)$ has constant Gauss curvature $4 c^{2}$.
4.4. Let f be a smooth real-valued function defined on a connected open subset U of \mathbb{R}^{2}.
(a) Show that the graph S of f is a minimal surface in \mathbb{R}^{3} (i.e., its mean curvature H vanishes) if and only if

$$
f_{y y}\left(1+f_{x}^{2}\right)-2 f_{x} f_{y} f_{x y}+f_{x x}\left(1+f_{y}^{2}\right)=0
$$

(b) Deduce that if $f(x, y)=g(x)$ then S is minimal if and only if S is a plane with normal vector parallel to the (x, z)-plane but not parallel to the x-axis.
(c) If $f(x, y)=g(x)+h(y)$, find the most general form of f in order for S to be minimal. Hint: Use separation of variables

