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Differential Geometry III, Solutions 5 (Week 15)

Christoffel symbols and Gauss’ Theorema Egregium

5.1. Show that the Gauss curvature K of the surface of revolution locally parametrized by

@(u,v) = (f(v) cos(u), f(v) sin(u),g(v)),  (u,v) €U,
(for some suitable parameter domain U) is given by
1 1 !
K= ).
2ff N1+ (f'/g)?
If the generating curve is parametrized by arc length, show that K = —f”/f. Deduce Theorema
Egregium in the latter case.

Solution: We have already calculated the coefficients of the first and second fundamental forms for a surface of
revolution (see e.g. Example 9.13), so we just cite the result here again:

E=f, F =0, G=f2+g"
,fg/ B B f//g/ o f/g//
/f/2_|_g/2’ M =0, N = /f/2_|_g/2'
If we assume now that f(v) > 0 everywhere, then we have
_L__ -7
T E f(f/2 +g/2)1/2’
(see Prop. 9.12), hence the Gauss curvature is
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as desired (we have also implicitly assumed here that f'(v) # 0 # ¢'(v)). If the curve is parametrized by arc
length, then f2 + ¢’ =1, and
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Moreover, differentiating f'? + ¢’ = 1 gives f'f” + ¢'¢” = 0, and we obtain
K- it — _g/(f//g/ _ f/g//) _ _g/f//g/ + f/(f/f//) _ _(9/2 + f/2)f// _ _LH
f f f f

as desired (this could also be obtained by simplifying the formula for K obtained above).

Now we can deduce Gauss’ Theorema Egregium by expressing f in terms of the coefficients of the first funda-
mental form: f = +/E. Then we have

f/ — Ev f// — Eva B Eg/Q
WE YR
so that
7f”/f _ Eg o EUIU — 1 (&)
AE?2 T 2E ~  2JE\VE/e

which is a special case (G = 1, i.e, G,, = 0) of the formula of Example 10.9.



5.2. Let : U — S be a parametrization of a surface S for which £ = G =1 and F = cos(uv) (so that
uv is the angle between the coordinate curves). Determine a suitable parameter domain U on which
x(U) is a surface (i.e., where the coordinate curves are not tangential). Show that

Solution:

Suitable parameter domain: The tangent vectors x, and x, are linearly dependent iff F' = cos?¥ = +1, where
¥ = uv.

1 cos v
os 1
definite matrix. Its determinant is 1 —cos? 1, and this is positive iff cos ¥ # +1. Since its trace is always positive
(the trace is 2), the matrix is positive definite iff cos # +1.

Another way to see this restriction is as follows: we have to assure that (c > with ¢ = wv is a positive

So a maximal parameter domain could be
U:={(u,v) € R?*|wv ¢ 7Z},
or, if you prefer a connected domain, another choice could be
U:={(u,v) eR*|0<u<n/v, v>0}.

(choosing just the component 0 < uv < ).

The further calculations are similar to ones used in Example 10.7 (and in the proof of Theorema Egregium).
We amend the order a bit to avoid computations with some zeros, and thus to save time in this way.

(a) Step 1: Christoffel symbols Fi—“j are functions defined by

Tyy =12y + T2y + LN (I'1)
Tyy = Digxy + T2hx, + MN (I'2)
Ty = D392y + Tagx, + NN (T'3)

(and we have I'}, = 'k since Ty, = Tyy)-
Before calculating Fi—“j in terms of F, F' and G, let us first see what we need (to save some time).
But we also need the following: Express @, - , etc. in terms of E, F, G:

Tuu = 3 (@ @) = 3By (=0) (1
Buv @ = (@ @)o = 1By (=0) @
Loy - Ty = %(mv Ty )y = %G (=0) 3)
Loy - Ty = %(wv Ty )y = ;G (=0) (4)
Buw @0 = (@0 @)~ T T = Fu— 3By (= ~vsin(uv)) 5)
Tow T = (@0 @)o — To Tuw = Fy — 3G (= —usin(un) (6)

(the terms in parentheses correspond to our special case E = G = 1, F = cos(uv)).
Multiplying the defining equations for I‘ by -x, and -x,, we obtain equations

1 1 1
ETY, + FI'Y, = 3 Bu Eli, + FT'}, = 5B, ET), + FT2, = F, — 3G
th + GF%I =F, — iEU’ FI‘%2 + GF%Q = iGu’ FF22 + GF22 — in_



Plugging in £ = G =1 and F' = cos(uv), we obtain

'}y + cos(uv)T%, =0, '}, + cos(uv)T%, = 0, '3, + cos(uv)T3y = —usin(uv),

cos(uv)l'}, + T2, = —vsin(uv), cos(uv)Tiy + T3, = 0, cos(uv)Tay + T2y = 0.

From this one could easily obtain that

v cos(uv) u
I} =—F—-, I}, =0 [y =— :
B sin(uw) e 2 sin(uv)
v wcos(uv)
F2 - __ 7 F2 =0 FQ e i S
1 sin(uv)’ 12 27 sin(w)

However, we will see now that we can avoid computations of '}, and I'3,.
Step 2: Calculate LN — M?:

From the equations above we have
LN =(LN)-(NN)
= (Tuu — I‘%ﬁcu - F%l“’i}) (v — F%2$u - F%zwv)
= Tyy * Lyv — F%Q Lyy * Ly *Fgg Lyu * Ly *F%l Ly * Ty *Ffl Lyy " Ty
—— —— —— ——
=0 =—wvsin(uv) =—usin(uv) =0
+ T T3 E + (01,15, + 1 T5,) F + T T5,G
= Tyy " Tyy + (F§2U + F%lu) Sin(U’U)
+ 145 + (T1,03, + T T5,) cos(uv) + T T3,
= Ty Ty + 12, (F}l +T2, +v sin(uv)) + I, (F%1 + 12, cos(uv)) + '} usin(uv).
Note that due to the defining equations on I't; and I'?; the first and second parentheses in the expression
above vanish, i.e.,
LN = 2y, - Ty + T usin(uv),

v cos(uv)
sin(uv) -~

which means that all we needed is to calculate I'l; =

Let us now calculate M?. First we observe that the linear system involving I'l, and I'%, is homogeneous
with non-zero determinant, so has a trivial solution only, i.e. '}, = 0 = I'?,. Hence,

M? =(MN)-(MN)
= (Tuo — Ty — Ty - (Toy — Tla®y — TTo,)
= Tyv * Luw;
so that
LN — M? = Zyy - Tyy — Tup - Typ + D1usin(uv) = Tuy - Toy — Ty - Ty + uv cos(uw).
Finally, recall that
Ty Tov = Tuw * Tuv = (Bu* Tov)u — (Tu * Tuv)o
= (Fy = Gu/2),, = (Euo/2)
= (—usin(uv)), — 0

= —sin(uv) — wv cos(uv),

so that finally,

LN — M? = —sin(uv) — uv cos(uv) + uv cos(uv)
= —sin(uw).
Step 3: Calculate K :
The Gauss curvature is
KﬁLN—M2 LN -M* -1

T EG-F2 1- cos?(uv)  sin(uw)

as desired.



5.3. (x) If the coefficients of the first fundamental form of a surface S are given by
E =2+ F =1, G =1,

show that the Gauss curvature of S is given by

1
K=——"—/.
(14 v2)2
Solution:
Calculations are similar to the previous exercise.
(a) Step 1: Christoffel symbols Ffj.
We have
1 1 1
ETY, + FI'}; = 5 Fu Eli, + FI'}, = 5B, ETy, + FI'3, = F, — 3G
1 1 1
FTI'}, +GT3, =F, — 5 Ev, FT}, +GT3, = 5Gus FIy, + GI'3, = G-
Plugging in £ = 2+ v? and F = G = 1, we obtain
(2+v*)l}, +T1 =0, (240", + T, = v, (24 v*)l3, + T3, =0,
Ify +T% = —v, i, + 17, =0, gy + 135 = 0.
We see that the equations on I'}, and I'%, have only the trivial solution I'}, = I'3, = 0. For the others, we
obtain 5
v 204w v v
T} = s T2 = ——— IMy=—— rfy=—-——.
1T q1e2) 11 T2 127 T2 12 1t 2
(b) Step 2: Calculate LN — M?:
We have
LN =(LN)-(NN)

(
= (Xyy — T1 2y —T2,2,) - (Tpy — Daoty — Tooxy)
= (Tuu — F%lwu - F%lwv) " Loy
= Tyu " Lyv — r%lmvv c Ly — F%ﬁ]}vv + Ly
So we only need @, - ¢, = G, /2 =0 and ¢y, -, = F, — G,,/2 = 0 in our case here, hence we have
LN =2, - Tyyp-
Similarly, for M? we obtain
M? =(MN)-(MN)
= (Tuv — F%Qwu - F%2$v) (T — F%qu - F%ﬁ”ﬂ)
= Typ " Lyy — QI‘%Q Loy * Ty 72F%2 Loy * Ty
—— ——
=E,/2=v =G, /2=0
+ (T )2 2y -2y +2TLT2, @y -y +(12,)% 2y - @y
(I'12) 121 12 (I'f2)
=E=2+02 =F=1 =G=1
202
1+ 02
v23(2 4+ v?) 202 n v?
A+02)? (022 (1407
202
1+ 02
v2(1 4 v?)
(1+v2)2
02
1402

= Ty * Lyw

= Tyv * LTyw

= Tyv * Ty



Hence
02

LN—M2 :wuu'wvv_wuv'wuv—’_m.
Recall again that

Lyu * Loy — Lyy * Tyv = (mu : mvv)u - (wu : wuv)v

- (7 -362), - (32),

so that finally
IN M= 1y ]
N 1+02 1402

(¢) Step 3: Calculate K :

The Gauss curvature is
_LN—-M?*  -1/(1+v?) -1

 EG-F?  (2+v?) -1 (1+v2)?

K
as desired.

5.4. Let x be a local parametrization of a surface S such that £ =1, F' =0 and G is a function of u only.

Show that o o
F2 :1—‘2:7u7 Plz_iu
12 217 54 22 B
and that all the other Christoffel symbols are zero. Hence show that the Gauss curvature K of S is
given by
K = VG
VG
Solution:
Again, the calculations are similar to the previous exercise.
(a) Step 1: Christoffel symbols Ffj
Since £ =1, F =0 and G, = 0, we have
1 1 1 1
I'yy =0, I'y; =0, Ly = *iGua
1
GT3, =0, GTy = 5Gu, GI3, =0,
which implies
G, Gy
(F§1 :)Ffz bYel and F%Q =T

and all other Christoffel symbols are 0, as desired (note that G cannot vanish as the first fundamental
form is positive definite).

(b) Step 2: Calculate LN — M?.
We have

LN = (LN) - (NN)
- (:Buu - F%lwu - F%lwv) : (xvv - F%Qwu - F§2$U)
= LTyu * (wvv - F%Qwu)
= Lyy * Lyv — F%2 Ly * Loy
~——
=E, /2=0

= Tyu * Tyo-



Similarly, for M? we obtain

M? =(MN)-(MN)
= (@uy — Tia®y — T1oxy) - (@0 — Doy — T3,
(a:uv - Ffzxv) ‘ (CIIM, - F%va)
= Tyv * Lyw _2F2 Lyy - Ty + F2 2331) * Ly
12 ( 12)
=G /2 e

(Gu)* | (Gu)* _ (Gu)?

= Tyv * Tyw 20 + G Lyv * Lyw e,

Hence,
(Gu)®
4G

LN—M2 = ZTyy - Tyy — Ly * Lyv T
Recall again that

Lyu * Loy — Lyp * Lyv = (mu : mvv)u - (mu : mu'u)v

- (B 50), - (52),
= _%Guuy
so that finally
(Gu)?
4G

1
LN — M? = —iGW +

(¢) Step 3: Calculate K.
The Gauss curvature is

_LN M —Guu/2+4 (Cu)/AC | G, (Gu)*

K=%G—Fz ~ G oG T 4G?

Finally, we have

VG

(\/é)uu 1 G, 1 Guu (Gu)2 Guu (Gu)2
VG :ﬁ(g\/@)u: (2\/5_46'3/2)_ - =K

- 2G 4G?
so that we obtain the desired formula.

Remark. A particular example of such coefficients is given by a surface of revolution with a generating curve
parametrized by arc length with u and v interchanged.



