
Durham University
Pavel Tumarkin

Epiphany 2017

Differential Geometry III, Solutions 6 (Week 16)

Curves on surfaces

6.1. Let {e1, e2} be an orthonormal basis of TpS consisting of eigenvectors of the Weingarten map −dpN
with corresponding eigenvalues κ1, κ2. If e = (cosϑ)e1 + (sinϑ)e2, show, that the normal curvature
κn of a curve tangential to e is given by

κn(ϑ) = κ1 cos2 ϑ+ κ2 sin2 ϑ.

Deduce that
1

2π

∫ 2π

0
κn(ϑ) dϑ = H,

where H denotes the mean curvature of S at p. (This justifies the term mean curvature).

Solution:

Note first that
Ip(e) = ‖e‖2 =

∥∥(cosϑ)e1 + (sinϑ)e2
∥∥2 = cos2 ϑ+ sin2 ϑ = 1

by Pythagoras’ Theorem (as e1, e2 are orthonormal). The normal curvature κn of a curve with tangent vector
e at p is given by

κn(ϑ) =
IIp(e)

Ip(e)
= IIp(e)

= IIp
(
(cosϑ)e1 + (sinϑ)e2

)
= −

〈
dpN((cosϑ)e1 + (sinϑ)e2), (cosϑ)e1 + (sinϑ)e2

〉
=
〈
κ1(cosϑ)e1 + κ2(sinϑ)e2), (cosϑ)e1 + (sinϑ)e2

〉
= κ1 cos2 ϑ+ κ2 sin2 ϑ

by Meusnier’s theorem (first equality), the definition of the second fundamental form (fourth equality), the fact
that e1, e2 are eigenvectors of −dpN (fifth equality) and that e1, e2 are orthonormal (last equality). This
shows the first formula.

For the second, just note that

1

2π

∫ 2π

0

κn(ϑ) dϑ =
1

2π

∫ 2π

0

(κ1 cos2 ϑ+ κ2 sin2 ϑ) dϑ =
1

2π
(κ1π + κ2π) =

1

2
(κ1 + κ2) = H(p)

as
∫ 2π

0
cos2 ϑ dϑ = π and similarly for the integral over sin2 ϑ.

6.2. Let α be the curve defined by

α(t) = et(cos t, sin t, 1) for t ∈ R.

Observe that α lies on the circular cone S = { (x, y, z) ∈ R3 |x2 + y2 = z2 }.
Show that the normal curvature of α in S is inversely proportional to et.

Solution:

Clearly,
(et cos t)2 + (et sin t)2 = (et)2,

so α(t) ∈ S for all t ∈ R. For further purposes, we also need

α′(t) = et(cos t− sin t, sin t+ cos t, 1).



Calculation of the normal curvature — reparametrization by arc length: Since ‖α′(t)‖ =√
3et we set

s =

∫ t

−∞

√
3eu du =

√
3et

so that t = log(s/
√

3) = log s− (log 3)/2. Let us now call the reparametrized curve β, i.e., we set

β(s) = α(log(s/
√

3)) =
s√
3

(
cos log

s√
3
, sin log

s√
3
, 1
)

and therefore, we have

β′(s) =
1√
3

(
cos log

s√
3
− sin log

s√
3
, sin log

s√
3

+ cos log
s√
3
, 1
)
,

β′′(s) =
1

s
√

3

(
− sin log

s√
3
− cos log

s√
3
, cos log

s√
3
− sin log

s√
3
, 0
)

How can we efficiently calculate the normal vector for a surface defined by an equation?
At p = (x, y, z), for a surface S = { (x, y, z) | f(x, y, z) = 0 } we have (here with f(x, y, z) = x2 + y2 − z2, hence
∇f(x, y, z) = 2(x, y,−z))

N(p) =
1

‖∇f(p)‖
∇f(p) =

1√
x2 + y2 + z2

(x, y,−z)
(

=
1

‖p‖
(x, y,−z) here.

)
— So there is no need to find a parametrization and then calculate xu × xv etc. —

Now, the normal curvature of the curve β (and hence α) is

κn,β(s) = β′′(s) ·N(β(s))

=
1

s
√

3‖β(s)‖

((
− sin log

s√
3
− cos log

s√
3

) s√
3

cos log
s√
3

+
(

cos log
s√
3
− sin log

s√
3

) s√
3

sin log
s√
3

)
=

−1

3‖β(s)‖

(
cos2 log

s√
3

+ sin2 log
s√
3

)
= − 1

3‖β(s)‖

and since

‖β(s)‖2 =
s2

3

(
cos2 log

s√
3

+ sin2 log
s√
3

+ 1
)

=
2s2

3
,

we have κn,β(s) = −1/(3
√

2s2/3) = −(
√

3/2)/(3s) and finally

κn,α(t) = κn,β(
√

3et) = −
√

3

2
· 1

3
√

3et
= − 1

3
√

2et

which is inversely proportional to et as desired.

Alternative approach: Calculation of the normal curvature using a local parametrization.
If we parametrize the surface S as a surface of revolution by

x(u, v) = (v cosu, v sinu, v), (u, v) ∈ (−π, π)× (0,∞) or (u, v) ∈ (0, 2π)× (0,∞)

then α is given in these parametrization as

α(t) = (et cos t, et sin t, et)x(u(t), v(t))

which means that
u(t) = t and v(t) = et.



Now, the formula for the normal curvature of α in a local parametrization is given by

κn =
(u′)2L+ 2u′v′M + (v′)2N

(u′)2E + 2u′v′F + (v′)2G
,

so we need the coefficients of the first and second fundamental form. Since

xu = (−v sinu, v cosu, 0) and xv = (cosu, sinu, 1),

we have xu × xv = v(cosu, sinu,−1), hence

N =
1√
2

(cosu, sinu,−1)

and E(u, v) = v2, F = 0 and G = 2. Moreover,

xuu = (−v cosu,−v sinu, 0), xuv = (− sinu, cosu, 0), xvv = (0, 0, 0),

so that

L = xuu ·N = − v√
2
, M = 0, N = 0.

Moreover, u′(t) = 1 and v′(t) = et, so that finally

κn =
−(u′)2v/

√
2

(u′)2v2 + 2(v′)2
=
−et/

√
2

e2t + 2e2t
= − 1

et3
√

2

6.3. Show that an asymptotic curve can only exist in the hyperbolic or flat region { p ∈ S |K(p) ≤ 0 }. (In
other words, if a surface is elliptic everywhere, then there is no asymptotic curve.)

Solution:

A curve is an asymptotic curve iff IIα(s)(α
′) = 0. If K(p) > 0, then LN −M2 > 0, which implies that the

second fundamental form is either positive definite or negative definite (recall the Krammer’s rule), any of these
implies that IIα(s) never takes zero values.

6.4. Let S be a surface in R3 with Gauss map N , and let β be a regular curve on S not necessarily
parametrized by arc length. Show that the geodesic curvature κg of β is given by

κg =
1

‖β′‖3
(β′ × β′′) ·N .

Solution:

Assume that β : [t0, t1] −→ S is the parametrization of the curve. Let us first parametrize the curve by arc
length, i.e., set

s = ϕ(t) :=

∫ t

t0

‖β′(u)‖ du,

then ds/ dt = ϕ′(t) = ‖β′(t)‖ and we set

α := β ◦ ϕ−1, i.e. α(s) := β(ϕ−1(s)) = β(t)

if t = ϕ(s). Clearly (as we did in the first term),

α′(s) = (ϕ−1)′(s)β′(ϕ−1(s)) =
1

‖β′(t)‖
β′(t)



since (ϕ−1)′(s) = 1/ϕ′(t) = 1/‖β′(t)‖ which we can also write formally as

d

ds
=

1

‖β′(t)‖
d

dt
.

Moreover,

α′′(s) =
d

ds

( 1

‖β′(t)‖
β′(t)

)
=

1

‖β′(t)‖
d

dt

( 1

‖β′(t)‖
β′(t)

)
=

1

‖β′(t)‖
d

dt

( 1

‖β′(t)‖

)
β′(t)︸ ︷︷ ︸

proportional to α′

+
1

‖β′(t)‖2
β′′(t).

Let now N be the normal to the surface (at α(s) = β(t)). We have

κg(s) = α′′(s) · (N(α(s)) ×α′(s)) =
1

‖β′(t)‖2
β′′(t) · (N(α(s)) ×α′(s))

=
1

‖β′(t)‖3
β′′(t) · (N(β(t)) × β′(t))

=
1

‖β′(t)‖3
(β′(t) × β′′(t)) ·N(β(t))

as β′ is proportional to α′, hence orthogonal to N ×α′ (for the second equality) and where we used

b · (c× a) = c · (a× b) = (a× b) · c.

In particular, we have shown the desired formula.

6.5. Let S be Enneper’s surface (see Problem 4.2) parametrized by

x(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
, (u, v) ∈ R2.

(a) Calculate the lines of curvature.

(b) Show that the asymptotic curves are given by u± v = const.

Solution:

We have calculated the coefficients of the first and second fundamental form w.r.t. x in Problem 4.2 as

E(u, v) = G(u, v) = (1 + u2 + v2)2, F (u, v) = 0 and L = 2, M = 0, N = −2;

(a) Since the parametrization if principal (i.e., F = 0 and M = 0), the lines of curvature are just the
coordinate curves (see, e.g., Prop. 11.18, or this can be easily computed explicitly). Hence they are given
by s 7→ x(s, v0) and s 7→ x(u0, s) for u0, v0 ∈ R.

(b) A curve α with local parametrization α(s) = x(u(s), v(s)) is an asymptotic curve if κn = 0, i.e., if
IIα(s)(α

′(s) = 0, or,

(u′)2L+ 2u′v′M + (v′)2N = 0

Here it means that

2(u′)2 − 2(v′)2 = 2(u′ + v′)(u′ − v′) = 0 or, equivalently (u− v)′ = 0 or (u+ v)′ = 0,

which is equivalent to u± v = const.

6.6. (a) (?) Show that the asymptotic curves on the surface given by x2 + y2 − z2 = 1 are straight lines.

(b) Let S be a ruled surface. What are necessary and sufficient assumptions on S for all asymptotic
curves being straight lines?

Hint: use linear algebra.



Solution:

(a) The surface is a one-sheeted hyperboloid, so it is doubly ruled (i.e. there are two lines through every
point). As we have already proved, all lines are asymptotic curves, so we only need to prove that there
are no others.

If {e1, e2} is a basis of TpS consisting of eigenvectors of −dpN , then IIp(ei) = κi, where κi are principal
curvatures, and 〈e1, e2〉 = 0 (there are no umbilic points since K < 0 everywhere). Therefore,

IIp(ae1 + be2) = a2κ1 + b2κ2,

which vanishes in the only case when b = ±a
√
−κ1/κ2, so there are exactly two directions on which IIp

vanishes. This completes the proof.

Equivalently, we could say that any indefinite form of rank 2 looks like x2 − y2 in some basis, so there are
two vectors with zero value only.

Alternatively, one could parametrize the hyperboloid as a ruled surface via

x(u, v) =
(
cos(u), sin(u), 0) + v(sin(u),− cos(u), 1),

then compute the coefficients of the second fundamental form, solve the differential equation

(u′)2L(u, v) + 2u′v′M(u, v) + (v′)2N(u, v) = 0

and observe that the solutions will be precisely the lines.

(b) The proof of (a) can be applied to any doubly ruled surface, so for these surfaces indeed all the asymptotic
curves are lines. The statement is obviously true for planes as well. Let us prove that for all other surfaces
the statement does not hold.

So, assume that S is neither a plane nor a doubly ruled surface. As we have already seen above, since S is
ruled all the points are either hyperbolic or flat, which means that there are no umbilic points (except for
some isolated planar ones), and every point p ∈ S has precisely two directions on which IIp vanishes, one
of which is the direction of the ruling. Note that these lines do not intersect each other in a ruled surface,
so we can take another asymptotic curve through every point which will not be a line (formally speaking
here we use the theorem of existence of a solution of differential equation with given initial data).


