Epiphany 2017

Differential Geometry III, Solutions 7 (Week 17)

Curves on surfaces. Geodesics.

7.1. If \boldsymbol{x} is a local parametrization of a surface S in \mathbb{R}^3 with E = 1, F = 0 and G is a function of u only, write down the equations for $s \mapsto \boldsymbol{\alpha}(s) = \boldsymbol{x}(u(s), v(s))$ to be a geodesic. Conclude that the coordinate curves, where v is constant, are geodesics.

Solution:

The curve α is a geodesic iff

$$u''E + \frac{1}{2}(u')^{2}E_{u} + u'v'E_{v} + (v')^{2}\left(F_{v} - \frac{1}{2}G_{u}\right) + v''F = 0$$

$$v''G + \frac{1}{2}(v')^{2}G_{v} + u'v'G_{u} + (u')^{2}\left(F_{u} - \frac{1}{2}E_{v}\right) + u''F = 0,$$

which reduces here to

$$u'' - \frac{1}{2}G_u(v')^2 = 0$$

v''G + u'v'G_u = 0.

Now, for a coordinate curve with v constant, we have v' = 0 and v'' = 0, so that the second equation is fulfilled. Moreover, the first one then becomes

u'' = 0.

Since the speed of α is constant, we have

$$\|\boldsymbol{\alpha}'(s)\|^2 = (u')^2 + G(v')^2 = \text{const.}$$

Since v' = 0, we must have $u' \neq 0$ (otherwise $\alpha'(s) = 0$), so that u'' = 0 as desired. Therefore $u(s) = u_0 + as$ (with $a \in \mathbb{R} \setminus \{0\}$) and the geodesic has the form

$$\boldsymbol{\alpha}(s) = \boldsymbol{x}(u_0 + as, v_0)$$

for some (u_0, v_0) in the parameter domain and some $a \in \mathbb{R}$.

7.2. Let $x: U \to S$ be a parametrization of a surface S, and let $\alpha(s) = x(u(s), v(s))$ be a curve parametrized by arc length. Find an expression for the geodesic curvature $\kappa_{\rm g}$ of α involving $u', v', u'', v'', E, F, G, \Gamma^i_{jk}$ (i.e. the *geodesic curvature is intrinsic*, $\kappa_{\rm g}$ depends only on the curve and the first fundamental form of the surface).

Solution:

The geodesic curvature is given by $\kappa_{g} = \alpha'' \cdot (N \times \alpha')$. Using the definition of the normal vector, and

$$\boldsymbol{\alpha}' = u'\boldsymbol{x}_u + v'\boldsymbol{x}_v$$

and its derivative

$$\alpha'' = u'' x_u + (u')^2 x_{uu} + 2u' v' x_{uv} + (v')^2 x_{vv} + v'' x_v$$

we obtain

$$\begin{split} \kappa_{\rm g} &= \boldsymbol{\alpha}'' \cdot (\boldsymbol{N} \times \boldsymbol{\alpha}') \\ &= \frac{1}{\|\boldsymbol{x}_u \times \boldsymbol{x}_v\|} \left(u'' \boldsymbol{x}_u + (u')^2 \boldsymbol{x}_{uu} + 2u'v' \boldsymbol{x}_{uv} + (v')^2 \boldsymbol{x}_{vv} + v'' \boldsymbol{x}_v \right) \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times (u' \boldsymbol{x}_u + v' \boldsymbol{x}_v) \right) \\ &= \frac{1}{\|\boldsymbol{x}_u \times \boldsymbol{x}_v\|} \left(v' u'' \boldsymbol{x}_u \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_v \right) \\ &+ (u')^3 \boldsymbol{x}_{uu} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_u \right) + (u')^2 v' \boldsymbol{x}_{uu} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_v \right) \\ &+ 2(u')^2 v' \boldsymbol{x}_{uv} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_u \right) + 2u'(v')^2 \boldsymbol{x}_{uv} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_v \right) \\ &+ u'(v')^2 \boldsymbol{x}_{vv} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_u \right) + (v')^3 \boldsymbol{x}_{vv} \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_v \right) \\ &+ u'v'' \boldsymbol{x}_v \cdot \left((\boldsymbol{x}_u \times \boldsymbol{x}_v) \times \boldsymbol{x}_u \right) \right). \end{split}$$

Note first that

$$\|\boldsymbol{x}_u \times \boldsymbol{x}_v\|^2 = EG - F^2$$

We now have to understand the expressions $x_u \cdot ((x_u \times x_v) \times x_v)$ etc. Using the rule

$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$
 or, equivalently, $(a \times b) \times c = (a \cdot c)b - (b \cdot c)a$

we obtain

$$\begin{aligned} \mathbf{x}_{u} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{v} \right) &= \mathbf{x}_{u} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{v}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{v}) \mathbf{x}_{u} \right) &= F^{2} - EG \\ \mathbf{x}_{uu} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{u} \right) &= \mathbf{x}_{uu} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{u}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{u}) \mathbf{x}_{u} \right) &= E\mathbf{x}_{uu} \cdot \mathbf{x}_{v} - F\mathbf{x}_{uu} \cdot \mathbf{x}_{u} \\ &= E \left(F_{u} - \frac{1}{2}E_{v} \right) - \frac{1}{2}FE_{u} \\ &= (EG - F^{2})\Gamma_{11}^{21} \\ \mathbf{x}_{uu} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{v} \right) &= \mathbf{x}_{uu} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{v}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{v}) \mathbf{x}_{u} \right) &= F\mathbf{x}_{uu} \cdot \mathbf{x}_{v} - G\mathbf{x}_{uu} \cdot \mathbf{x}_{u} \\ &= F \left(F_{u} - \frac{1}{2}E_{v} \right) - \frac{1}{2}GE_{u} \\ &= -(EG - F^{2})\Gamma_{11}^{11} \\ \mathbf{x}_{uv} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{u} \right) &= \mathbf{x}_{uv} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{u}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{u}) \mathbf{x}_{u} \right) &= E\mathbf{x}_{uv} \cdot \mathbf{x}_{v} - F\mathbf{x}_{uv} \cdot \mathbf{x}_{u} \\ &= \frac{1}{2}EG_{u} - \frac{1}{2}E_{v}F \\ &= (EG - F^{2})\Gamma_{12}^{2} \\ \mathbf{x}_{uv} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{v} \right) &= \mathbf{x}_{uv} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{v}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{v}) \mathbf{x}_{u} \right) &= F\mathbf{x}_{uv} \cdot \mathbf{x}_{v} - G\mathbf{x}_{uv} \cdot \mathbf{x}_{u} \\ &= \frac{1}{2}FG_{u} - \frac{1}{2}E_{v}G \\ &= -(EG - F^{2})\Gamma_{12}^{1} \\ \mathbf{x}_{vv} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{u} \right) &= \mathbf{x}_{vv} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{v}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{u}) \mathbf{x}_{u} \right) &= E\mathbf{x}_{vv} \cdot \mathbf{x}_{v} - F\mathbf{x}_{vv} \cdot \mathbf{x}_{u} \\ &= \frac{1}{2}EG_{v} - F \left(F_{v} - \frac{1}{2}G_{u} \right) \\ &= (EG - F^{2})\Gamma_{12}^{2} \\ \mathbf{x}_{vv} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{v} \right) &= \mathbf{x}_{vv} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{v}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{v}) \mathbf{x}_{u} \right) &= F\mathbf{x}_{vv} \cdot \mathbf{x}_{v} - G\mathbf{x}_{vv} \cdot \mathbf{x}_{u} \\ &= \frac{1}{2}FG_{v} - G \left(F_{v} - \frac{1}{2}G_{u} \right) \\ &= -(EG - F^{2})\Gamma_{12}^{2} \\ \mathbf{x}_{v} \cdot \left((\mathbf{x}_{u} \times \mathbf{x}_{v}) \times \mathbf{x}_{u} \right) &= \mathbf{x}_{v} \cdot \left((\mathbf{x}_{u} \cdot \mathbf{x}_{u}) \mathbf{x}_{v} - (\mathbf{x}_{v} \cdot \mathbf{x}_{u}) \mathbf{x}_{u} \right) &= EG - F^{2}. \end{aligned}$$

Alltogether, we have

$$\begin{aligned} \kappa_{\rm g} &= \frac{1}{\sqrt{EG - F^2}} \Big((u'v'' - u''v')(EG - F^2) \\ &+ (u')^3 \Big(E\Big(F_u - \frac{1}{2}E_v\Big) - \frac{1}{2}FE_u\Big) + (u')^2v'\Big(F\Big(F_u - \frac{1}{2}E_v\Big) - \frac{1}{2}GE_u\Big) \\ &+ 2(u')^2v'\Big(\frac{1}{2}EG_u - \frac{1}{2}E_vF\Big) + 2u'(v')^2\Big(\frac{1}{2}FG_u - \frac{1}{2}E_vG\Big) \\ &+ u'(v')^2\Big(\frac{1}{2}EG_v - F\Big(F_v - \frac{1}{2}G_u\Big)\Big) + (v')^3\Big(\frac{1}{2}FG_v - G\Big(F_v - \frac{1}{2}G_u\Big)\Big)\Big) \end{aligned}$$
$$= \sqrt{EG - F^2}\Big(\Gamma_{11}^2u'^3 - \Gamma_{12}^2v'^3 + (2\Gamma_{12}^2 - \Gamma_{11}^1)u'^2v' - (2\Gamma_{12}^1 - \Gamma_{22}^2)u'v'^2 - u''v' + v''u'\Big)$$

In particular, for an arbitrarily parametrized curve the geodesic curvatire can be computed as

$$\kappa_{\rm g} = \frac{\sqrt{EG - F^2} \left(\Gamma_{11}^2 u'^3 - \Gamma_{22}^1 v'^3 + (2\Gamma_{12}^2 - \Gamma_{11}^1) u'^2 v' - (2\Gamma_{12}^1 - \Gamma_{22}^2) u' v'^2 - u'' v' + v'' u' \right)}{(Eu'^2 + 2Fu'v' + Gv'^2)^{3/2}}$$

(cf. Exercise 6.4).

7.3. Show that a curve of constant geodesic curvature c on the unit sphere $S^2(1)$ in \mathbb{R}^3 is a planar circle of length $2\pi(1+c^2)^{-1/2}$.

Hint: If $\boldsymbol{\alpha}$ is a curve of constant geodesic curvature c show that the vector $\boldsymbol{e}(s) = \boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}'(s) + c\boldsymbol{\alpha}(s)$ does not depend on s, where $(\cdot)'$ denotes differentiation with respect to arc length).

Solution:

On the unit sphere we have $N(\alpha(s)) = \alpha(s)$. Therefore,

$$\begin{aligned} \boldsymbol{e}(s) &= \boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}'(s) + c\boldsymbol{\alpha}(s), \\ \boldsymbol{e}'(s) &= \underbrace{\boldsymbol{\alpha}'(s) \times \boldsymbol{\alpha}'(s)}_{=\boldsymbol{0}} + \underbrace{\boldsymbol{\alpha}(s)}_{=\boldsymbol{N}(\boldsymbol{\alpha}(s))} \times \boldsymbol{\alpha}''(s) + c\boldsymbol{\alpha}'(s), \\ &= \boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \left(\kappa_{n}\boldsymbol{N}(\boldsymbol{\alpha}(s)) + \underbrace{\kappa_{g}}_{=c} \left(\boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}'(s)\right)\right) + c\boldsymbol{\alpha}'(s) \\ &= c\boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \left(\boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}'(s)\right) + c\boldsymbol{\alpha}'(s). \end{aligned}$$

Now, note that $\mathbf{a} := \mathbf{\alpha}'(s)$ and $\mathbf{b} := \mathbf{N}(\mathbf{\alpha}(s))$ are orthonormal vectors, therefore $\mathbf{c} := \mathbf{a} \times \mathbf{b}$ is also a unit vector orthogonal to \mathbf{a} and \mathbf{b} . In particular, $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ is a positively oriented orthonormal basis of \mathbb{R}^3 . For such a basis, we have $\mathbf{b} \times (\mathbf{b} \times \mathbf{a}) = -\mathbf{a}$, and hence $\mathbf{e}'(s) = \mathbf{0}$, so $\mathbf{e}(s) = \mathbf{e}$ is a constant vector.

We will now show that $\alpha(s)$ lies in a plane: We have

$$\boldsymbol{\alpha}(s) \cdot \boldsymbol{e} = \boldsymbol{\alpha}(s) \cdot (\boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}'(s) + c\boldsymbol{\alpha}(s)) = c\boldsymbol{\alpha}(s) \cdot \boldsymbol{\alpha}(s) = c$$

for all $s \in \mathbb{R}$ as $\boldsymbol{\alpha}(s) \in S^2(1)$. But this means that $\boldsymbol{\alpha}(s)$ makes a constant angle with \boldsymbol{e} and thus lies in a plane at distance $c/\|\boldsymbol{e}(s)\|$ from the origin. Since $\|\boldsymbol{e}(s)\| = \sqrt{1+c^2}$ (by Pythagoras' theorem: $\{\boldsymbol{\alpha}(s) \times \boldsymbol{\alpha}'(s), \boldsymbol{\alpha}'(s)\}$ are orthonormal), the radius of the circle (the intersection of the plane with the unit sphere) is $r = \sqrt{1-c^2/(1+c^2)} = 1/\sqrt{1+c^2}$. Hence, the circle has circumference $2\pi r = 2\pi/\sqrt{1+c^2}$.

7.4. (\star) Let S be a surface in \mathbb{R}^3 and suppose that Π is a plane which intersects S orthogonally along a regular curve γ . If $\alpha(s)$ is a parametrization of γ such that $\|\alpha'(s)\|$ is constant, show that α is a geodesic of S.

Solution:

By construction, we have that $\alpha'(s)$ and the normal $N(\alpha(s))$ are parallel to Π for all s. Let e be a non-zero vector normal to Π , then $N(\alpha(s)) \times \alpha'(s)$ is parallel to e. From $\alpha'(s) \cdot e = 0$ (again, $\alpha'(s)$)

is parallel to Π) we deduce that (after taking the derivative) $\alpha''(s) \cdot \boldsymbol{e} = 0$ (as \boldsymbol{e} is independent of s), so we see that

$$\kappa_{g} = \frac{1}{\|\boldsymbol{\alpha}'(s)\|^{3}} \big(\boldsymbol{\alpha}'(s) \times \boldsymbol{\alpha}''(s) \big) \cdot \boldsymbol{N}(\boldsymbol{\alpha}(s)) = \frac{1}{\|\boldsymbol{\alpha}'(s)\|^{3}} \big(\boldsymbol{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}'(s) \big) \cdot \boldsymbol{\alpha}''(s) = 0.$$

Therefore, since the curve is also parametrized proportionally to arc length, it is a geodesic.

- **7.5.** (a) Show that any constant speed curve on a surface S in \mathbb{R}^3 which is a curve of intersection of S with a plane of reflectional symmetry of S is a geodesic.
 - (b) Show that the curves of intersection of the coordinate planes in \mathbb{R}^3 with the surface S defined by the equation $x^4 + y^6 + z^8 = 1$ are geodesics.

Solution:

- (a) A plane of reflection leaving a surface invariant intersects the surface orthogonally (prove this!). Therefore, the result follows immediately from the previous exercise.
- (b) Note that the reflections $(x, y, z) \mapsto (-x, y, z)$, $(x, y, z) \mapsto (x, -y, z)$ and $(x, y, z) \mapsto (x, -y, z)$ all leave the surface given by $x^4 + y^6 + z^8 = 1$ invariant. Since these reflections are reflections along the coordinate planes, the result follows.
- **7.6.** Let α be a regular curve on a surface S in \mathbb{R}^3 .
 - (a) If $\boldsymbol{\alpha}$ is both a line of curvature and a geodesic, show that $\boldsymbol{\alpha}$ is a planar curve. *Hint:* Show that $N \times \boldsymbol{\alpha}'$ is constant along $\boldsymbol{\alpha}$.
 - (b) If α is both a geodesic and a planar curve with nowhere vanishing curvature show that α is a line of curvature.

Solution:

(a) Denote

$$e(s) := (N \circ \alpha)(s) \times \alpha'(s)$$

so that its derivative is

$$e'(s) = (\mathbf{N} \circ \boldsymbol{\alpha})'(s) \times \boldsymbol{\alpha}'(s) + (\mathbf{N} \circ \boldsymbol{\alpha})(s) \times \boldsymbol{\alpha}''(s)$$

= $(d_{\boldsymbol{\alpha}(s)}\mathbf{N})(\boldsymbol{\alpha}'(s)) \times \boldsymbol{\alpha}'(s) + \mathbf{N}(\boldsymbol{\alpha}(s)) \times \boldsymbol{\alpha}''(s)$

Now, since $\boldsymbol{\alpha}$ is a line of curvature, $d_{\boldsymbol{\alpha}(s)} \boldsymbol{N}(\boldsymbol{\alpha}'(s))$ is a multiple of $\boldsymbol{\alpha}'(s)$, hence the first vector product vanishes (as $\boldsymbol{a} \times \boldsymbol{a} = \boldsymbol{0}$), and for the second term, note that as $\boldsymbol{\alpha}$ is a geodesic, $\boldsymbol{\alpha}''(s)$ is a multiple of $\boldsymbol{N}(\boldsymbol{\alpha}(s))$, and hence this vector product also vanishes. Alltogether we have shown $\boldsymbol{e}'(s) = 0$ for all s, say

$$\boldsymbol{e}(s) = \boldsymbol{e}_0$$

for some vector $\mathbf{e}_0 \in \mathbb{R}^3$. Note that $\mathbf{e}_0 \neq \mathbf{0}$, because $\boldsymbol{\alpha}'$ and $\boldsymbol{\alpha}''$ are orthogonal (here we use the constant speed property of a geodesic), so $\boldsymbol{\alpha}'$ and $N(\boldsymbol{\alpha}(s))$ are also orthogonal (and of course non-zero).

Let us now show that $\boldsymbol{\alpha}(s)$ lies in a plane normal to \boldsymbol{e}_0 , i.e., $\boldsymbol{\alpha}(s) \cdot \boldsymbol{e}_0 = \text{const}$, or equivalently, $\boldsymbol{\alpha}'(s) \cdot \boldsymbol{e}_0 = 0$. Indeed,

$$\boldsymbol{\alpha}' \cdot \boldsymbol{e}_0 = \boldsymbol{\alpha}' \cdot \left((\boldsymbol{N} \circ \boldsymbol{\alpha}) \times \boldsymbol{\alpha}' \right) = (\boldsymbol{N} \circ \boldsymbol{\alpha}) \cdot \left(\boldsymbol{\alpha}' \times \boldsymbol{\alpha}' \right) = 0.$$

In particular, $\alpha(s)$ lies in a plane for all s.

(b) If $\boldsymbol{\alpha}$ is a geodesic, then $\boldsymbol{\alpha}'' = \kappa_n \boldsymbol{N}$. Moreover, there exist $\boldsymbol{e}_0 \in \mathbb{R}^3$ such that $\boldsymbol{\alpha}(s) \cdot \boldsymbol{e}_0 = \text{const}$ for all s (as $\boldsymbol{\alpha}$ lies in a plane), hence taking the derivatives give $\boldsymbol{\alpha}' \cdot \boldsymbol{e}_0 = 0$ and $\boldsymbol{\alpha}'' \cdot \boldsymbol{e}_0 = 0$. Using the fact that $\kappa_n(s) \neq 0$ for all s we conclude that \boldsymbol{e}_0 is orthogonal to $\boldsymbol{N}(\boldsymbol{\alpha}(s))$ and $\boldsymbol{\alpha}'(s)$ for all s. Taking the derivative of $\boldsymbol{N}(\boldsymbol{\alpha}(s)) \cdot \boldsymbol{e}_0 = 0$ gives

$$d_{\boldsymbol{\alpha}(s)}\boldsymbol{N}(\boldsymbol{\alpha}'(s))\cdot\boldsymbol{e}_0=0$$

for all s, and from the fact that N is a unit vector, we also obtain that $d_{\alpha(s)}N(\alpha'(s))$ is orthogonal to $N(\alpha(s))$. In particular we have shown that $d_{\alpha(s)}N(\alpha'(s))$ and $\alpha'(s)$ both are orthogonal to e_0 and $d_{\alpha(s)}N(\alpha'(s))$, hence there must be a scalar $\lambda(s) \in \mathbb{R}$ such that $d_{\alpha(s)}N(\alpha'(s)) = \lambda(s)\alpha'(s)$, i.e., α is a line of curvature.