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Differential Geometry III, Solutions 7 (Week 17)

Curves on surfaces. Geodesics.

7.1. If x is a local parametrization of a surface S in R3 with E = 1, F = 0 and G is a function of
u only, write down the equations for s 7→ α(s) = x(u(s), v(s)) to be a geodesic. Conclude
that the coordinate curves, where v is constant, are geodesics.

Solution:

The curve α is a geodesic iff
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which reduces here to
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v′′G+ u′v′Gu = 0.

Now, for a coordinate curve with v constant, we have v′ = 0 and v′′ = 0, so that the second
equation is fulfilled. Moreover, the first one then becomes

u′′ = 0.

Since the speed of α is constant, we have

‖α′(s)‖2 = (u′)2 +G(v′)2 = const.

Since v′ = 0, we must have u′ 6= 0 (otherwise α′(s) = 0), so that u′′ = 0 as desired. Therefore
u(s) = u0 + as (with a ∈ R \ {0}) and the geodesic has the form

α(s) = x(u0 + as, v0)

for some (u0, v0) in the parameter domain and some a ∈ R.

7.2. Let x : U −→ S be a parametrization of a surface S, and let α(s) = x(u(s), v(s)) be a
curve parametrized by arc length. Find an expression for the geodesic curvature κg of α
involving u′, v′, u′′, v′′, E, F , G, Γi

jk (i.e. the geodesic curvature is intrinsic, κg depends
only on the curve and the first fundamental form of the surface).

Solution:

The geodesic curvature is given by κg = α′′ · (N ×α′). Using the definition of the normal vector,
and

α′ = u′xu + v′xv

and its derivative
α′′ = u′′xu + (u′)2xuu + 2u′v′xuv + (v′)2xvv + v′′xv



we obtain
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Note first that
‖xu × xv‖2 = EG− F 2

We now have to understand the expressions xu · ((xu × xv) × xv) etc. Using the rule

a× (b× c) = (a · c)b− (a · b)c or, equivalently, (a× b) × c = (a · c)b− (b · c)a

we obtain
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Alltogether, we have
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In particular, for an arbitrarily parametrized curve the geodesic curvatire can be computed as
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(cf. Exercise 6.4).

7.3. Show that a curve of constant geodesic curvature c on the unit sphere S2(1) in R3 is a
planar circle of length 2π(1 + c2)−1/2.

Hint: If α is a curve of constant geodesic curvature c show that the vector e(s) = α(s) ×
α′(s) + cα(s) does not depend on s, where (·)′ denotes differentiation with respect to arc
length).

Solution:

On the unit sphere we have N(α(s)) = α(s). Therefore,

e(s) = α(s) ×α′(s) + cα(s),

e′(s) = α′(s) ×α′(s)︸ ︷︷ ︸
=0

+ α(s)︸︷︷︸
=N(α(s))

×α′′(s) + cα′(s),

= N(α(s)) ×
(
κnN(α(s)) + κg︸︷︷︸

=c

(
N(α(s)) ×α′(s)

))
+ cα′(s),

= cN(α(s)) ×
(
N(α(s)) ×α′(s)

)
+ cα′(s).

Now, note that a := α′(s) and b := N(α(s)) are orthonormal vectors, therefore c := a× b is also
a unit vector orthogonal to a and b. In particular, {a, b, c} is a positively oriented orthonormal
basis of R3. For such a basis, we have b× (b× a) = −a, and hence e′(s) = 0, so e(s) = e is a
constant vector.

We will now show that α(s) lies in a plane: We have

α(s) · e = α(s) ·
(
α(s) ×α′(s) + cα(s)

)
= cα(s) ·α(s) = c

for all s ∈ R as α(s) ∈ S2(1). But this means that α(s) makes a constant angle with e and thus lies
in a plane at distance c/‖e(s)‖ from the origin. Since ‖e(s)‖ =

√
1 + c2 (by Pythagoras’ theorem:

{α(s) × α′(s),α′(s)} are orthonormal), the radius of the circle (the intersection of the plane
with the unit sphere) is r =

√
1− c2/(1 + c2) = 1/

√
1 + c2. Hence, the circle has circumference

2πr = 2π/
√

1 + c2.

7.4. (?) Let S be a surface in R3 and suppose that Π is a plane which intersects S orthogonally
along a regular curve γ. If α(s) is a parametrization of γ such that ‖α′(s)‖ is constant,
show that α is a geodesic of S.

Solution:

By construction, we have that α′(s) and the normal N(α(s)) are parallel to Π for all s. Let e be a
non-zero vector normal to Π, then N(α(s))×α′(s) is parallel to e. From α′(s) ·e = 0 (again, α′(s)



is parallel to Π) we deduce that (after taking the derivative) α′′(s) · e = 0 (as e is independent of
s), so we see that

κg =
1

‖α′(s)‖3
(
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)
·N(α(s)) =
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(
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)
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Therefore, since the curve is also parametrized proportionally to arc length, it is a geodesic.

7.5. (a) Show that any constant speed curve on a surface S in R3 which is a curve of inter-
section of S with a plane of reflectional symmetry of S is a geodesic.

(b) Show that the curves of intersection of the coordinate planes in R3 with the surface
S defined by the equation x4 + y6 + z8 = 1 are geodesics.

Solution:

(a) A plane of reflection leaving a surface invariant intersects the surface orthogonally (prove
this!). Therefore, the result follows immediately from the previous exercise.

(b) Note that the reflections (x, y, z) 7→ (−x, y, z), (x, y, z) 7→ (x,−y, z) and (x, y, z) 7→ (x,−y, z)
all leave the surface given by x4 + y6 + z8 = 1 invariant. Since these reflections are reflections
along the coordinate planes, the result follows.

7.6. Let α be a regular curve on a surface S in R3.

(a) If α is both a line of curvature and a geodesic, show that α is a planar curve.

Hint: Show that N ×α′ is constant along α.

(b) If α is both a geodesic and a planar curve with nowhere vanishing curvature show
that α is a line of curvature.

Solution:

(a) Denote
e(s) := (N ◦α)(s) ×α′(s)

so that its derivative is

e′(s) = (N ◦α)′(s) ×α′(s) + (N ◦α)(s) ×α′′(s)

= (dα(s)N)(α′(s)) ×α′(s) +N(α(s)) ×α′′(s)

Now, since α is a line of curvature, dα(s)N(α′(s)) is a multiple of α′(s), hence the first vector
product vanishes (as a×a = 0), and for the second term, note that as α is a geodesic, α′′(s)
is a multiple of N(α(s)), and hence this vector product also vanishes. Alltogether we have
shown e′(s) = 0 for all s, say

e(s) = e0

for some vector e0 ∈ R3. Note that e0 6= 0, because α′ and α′′ are orthogonal (here we use
the constant speed property of a geodesic), so α′ and N(α(s)) are also orthogonal (and of
course non-zero).

Let us now show that α(s) lies in a plane normal to e0, i.e., α(s) ·e0 = const, or equivalently,
α′(s) · e0 = 0. Indeed,

α′ · e0 = α′ ·
(
(N ◦α) ×α′) = (N ◦α) ·

(
α′ ×α′) = 0.

In particular, α(s) lies in a plane for all s.

(b) If α is a geodesic, then α′′ = κnN . Moreover, there exist e0 ∈ R3 such that α(s) ·e0 = const
for all s (as α lies in a plane), hence taking the derivatives give α′ · e0 = 0 and α′′ · e0 = 0.
Using the fact that κn(s) 6= 0 for all s we conclude that e0 is orthogonal to N(α(s)) and
α′(s) for all s. Taking the derivative of N(α(s)) · e0 = 0 gives

dα(s)N(α′(s)) · e0 = 0

for all s, and from the fact that N is a unit vector, we also obtain that dα(s)N(α′(s))
is orthognal to N(α(s)). In particular we have shown that dα(s)N(α′(s)) and α′(s) both
are orthogonal to e0 and dα(s)N(α′(s)), hence there must be a scalar λ(s) ∈ R such that
dα(s)N(α′(s)) = λ(s)α′(s), i.e., α is a line of curvature.


