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Differential Geometry III, Solutions 7 (Week 17)

Curves on surfaces. Geodesics.

7.1. If x is a local parametrization of a surface S in R? with £ = 1, F = 0 and G is a function of
u only, write down the equations for s — a(s) = x(u(s),v(s)) to be a geodesic. Conclude
that the coordinate curves, where v is constant, are geodesics.

Solution:

The curve a is a geodesic iff
" 1 "2 1, N2 1 "
u E+§(u) E,+uvE, + () (Fv—gGu)—f—v F=0
1 1
v’'G + i(v’)2Gv +u'v'Gy + (u)? (Fu — §EU) +u'F =0,

which reduces here to

1
u’ — §C¥u(1/)2 =0
v'G+u'v'G, =0.

Now, for a coordinate curve with v constant, we have v = 0 and v” = 0, so that the second
equation is fulfilled. Moreover, the first one then becomes

u” = 0.
Since the speed of a is constant, we have
&/ (s)[|* = (v')? + G(v')? = const.

Since v' = 0, we must have u’' # 0 (otherwise a’(s) = 0), so that v’ = 0 as desired. Therefore
u(s) = up + as (with a € R\ {0}) and the geodesic has the form

a(s) = x(up + as, vg)
for some (ug,vg) in the parameter domain and some a € R.

7.2. Let «: U — S be a parametrization of a surface S, and let a(s) = x(u(s),v(s)) be a
curve parametrized by arc length. Find an expression for the geodesic curvature xg of a
involving v/, v/, u”, V", E, F, G, Fé’k (i.e. the geodesic curvature is intrinsic, Ky depends
only on the curve and the first fundamental form of the surface).

Solution:

The geodesic curvature is given by k; = a” - (N X a@’). Using the definition of the normal vector,
and
! !/ !/
o =UT, +VxT,

and its derivative

1 " N2 1.7 N2 "
" =u"x, + (W) ey + 200 Ty + (V) @y + 0",



we obtain

kg =a” - (N x ')
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Note first that

(v’u”wu (@0 X Ty) X @)

+ (1) 32y - ((zr:u X T,) X a:u) + (W) Ty - ((a:u X T,) X mv)

+2(0) 20 @y - (T X @) X 2y) + 20/ (V) @y - (T X @) X T)
+ ' (V)@ - (@0 X ) X ) + (V)T - (0 X ) X T4

+ u'v" @y - (2 X T,) X scu))

|z, X || = EG — F?

We now have to understand the expressions x,, - ((, X ®,) X x,) etc. Using the rule

ax (bxc)=(a-c)b—(a-b)c or, equivalently, (a X b) X c=(a-c)b— (b

we obtain

T, - ((mu X &) X zc,U) =x, - ((:cu CXy) Ty — (X azv)mu) =F? - EG

('@ + (W) @y + 20"V T + (V)2 @0y + 0" 20) - (0 X ) X (WY + V')
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Loy * ((xu X m'u) X wv) = Lyy ((aju 'wv)xv - (xv ' xv)mu) =Fxyy Ty — GTyy - Ty
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Ty (T X Ty) X Ty) = By - (X0 - Tu) Ty — (Ty - ) Ty) = ETyy - Ty — FTyy - Ty

1 1
= -EG, — -E,F
B3

= (EG - F)r,

Lyv * ((wu X wv) X wv) = Tyv * ((wu . wv)wv - (wv . 131;)33“) = quv Ly — quv * Ly
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= —(BG - F*)I'

Loy - ((azu X &Ly) X wu) = Ty - ((wu STy )Ty — (T - a:u):cu) = Exyy -y — Fxy,
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Alltogether, we have

_ 1 1,1 ",.1 2
Rg—\/ﬁ((uv —Uu 'U)(EG*F)

+ (u')g(E(Fu - %EU> - %FEH) + ()2 (F(Fu - %E) - %GEU)

1 1 1 1
+ 2(u’)2fu’(fEGu - fEUF) + 20/ (v))? (fFGu - fEUG>
2 2 2 2
1 1 1 1
+ u’(v’)z(fEGv - F(Fv - qu)) +(0')? (fFGv - G(Fv - qu»)
2 2 2 2
= VEG — F2(THu"® — Dy, + (2T}, — '}y )u®v’ — (20}, — T3)u/v"? — uv/ +0"u)
In particular, for an arbitrarily parametrized curve the geodesic curvatire can be computed as

VEG — F2(T3u® — T30 + (2I'3, — T} )u/?0’ — (2T}, — I3y)u/v? — u/"v' + v"u)

kg = (Bu? + 2Fu'v + GU/2)3/2

(cf. Exercise 6.4).

Show that a curve of constant geodesic curvature ¢ on the unit sphere S%(1) in R? is a
planar circle of length 27 (1 4 ¢?)~1/2.

Hint: If a is a curve of constant geodesic curvature ¢ show that the vector e(s) = a(s) X
a/(s) + ca(s) does not depend on s, where (-)" denotes differentiation with respect to arc
length).

Solution:

On the unit sphere we have N (a(s)) = a(s). Therefore,

e( a(s) x a/(s) + ca(s),
es)=a(s) xad(s)+ afs) xa'(s)+ca(s),
—_— —~~
=0 =N(a(s))
N(a(s)) x (kN (@(s) + ky (N(@(s)) x /(s))) +ca(s),
=7

=cN(a(s)) X (N(a(s)) x a'(s)) + ca(s).
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Now, note that a := &/(s) and b := N(a(s)) are orthonormal vectors, therefore ¢ := a X b is also
a unit vector orthogonal to @ and b. In particular, {a,b, ¢} is a positively oriented orthonormal
basis of R®. For such a basis, we have b X (b X a) = —a, and hence €'(s) = 0, so e(s) = e is a
constant vector.

We will now show that a(s) lies in a plane: We have
a(s)-e=a(s) (a(s) X a'(s) + ca(s)) = ca(s) - a(s) =c

for all s € R as a(s) € S?(1). But this means that a(s) makes a constant angle with e and thus lies
in a plane at distance c¢/||e(s)|| from the origin. Since ||e(s)|| = v/1 + ¢? (by Pythagoras’ theorem:
{a(s) x a(s),a’(s)} are orthonormal), the radius of the circle (the intersection of the plane
with the unit sphere) is 7 = /1 —2/(1 + ¢2) = 1/v/1+ c2. Hence, the circle has circumference

27r =27 /V1 + 2.

(x) Let S be a surface in R? and suppose that II is a plane which intersects S orthogonally
along a regular curve ~. If a(s) is a parametrization of « such that ||a/(s)| is constant,
show that a is a geodesic of S.

Solution:

By construction, we have that a@/(s) and the normal N («(s)) are parallel to II for all s. Let e be a
non-zero vector normal to I, then N (a(s)) X &/(s) is parallel to e. From a/(s)-e = 0 (again, a/(s)
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is parallel to II) we deduce that (after taking the derivative) &’/ (s) - e = 0 (as e is independent of
), so we see that

IO = W(N(Q(S)) x a'(s)) - a’(s) = 0.

Therefore, since the curve is also parametrized proportionally to arc length, it is a geodesic.

Kg (a'(s) X @"(s)) - N(a(s))

(a) Show that any constant speed curve on a surface S in R? which is a curve of inter-
section of S with a plane of reflectional symmetry of S is a geodesic.

(b) Show that the curves of intersection of the coordinate planes in R? with the surface
S defined by the equation z* 4+ y5 + 28 = 1 are geodesics.

Solution:

(a) A plane of reflection leaving a surface invariant intersects the surface orthogonally (prove
this!). Therefore, the result follows immediately from the previous exercise.

(b) Note that the reflections (z,y, 2) — (—z,vy, 2), (x,y,2) — (x,—y,2) and (z,y,2) — (2, —y, 2)
all leave the surface given by % +¢5 + 2% = 1 invariant. Since these reflections are reflections
along the coordinate planes, the result follows.

Let a be a regular curve on a surface S in R3.

(a) If av is both a line of curvature and a geodesic, show that « is a planar curve.
Hint: Show that N x o' is constant along c.

(b) If o is both a geodesic and a planar curve with nowhere vanishing curvature show
that « is a line of curvature.

Solution:

(a) Denote
e(s) = (N o a)(s) X o(s)

so that its derivative is
¢/(s) = (N oa)(s) x a'(s) + (N o a)(s) x a'(s)
= (da(syN) (&' (s)) X &'(s) + N(a(s)) x a”(s)

Now, since a is a line of curvature, do ()N (' (s)) is a multiple of o’(s), hence the first vector
product vanishes (as @ X a = 0), and for the second term, note that as « is a geodesic, &’ (s)
is a multiple of N (a(s)), and hence this vector product also vanishes. Alltogether we have
shown e’(s) = 0 for all s, say

e(s) = e
for some vector eg € R3. Note that ey # 0, because o’ and ' are orthogonal (here we use
the constant speed property of a geodesic), so &’ and N(«a(s)) are also orthogonal (and of
course non-zero).
Let us now show that a(s) lies in a plane normal to ey, i.e., a(s)- ey = const, or equivalently,
a/(s) - eg = 0. Indeed,

o-e=a (Noa)xa)=(Noa) (o xa')=0.
In particular, a(s) lies in a plane for all s.

(b) If a is a geodesic, then a” = k,IN. Moreover, there exist ey € R3 such that a(s)-eq = const
for all s (as « lies in a plane), hence taking the derivatives give @’ - eg = 0 and & - e = 0.
Using the fact that x,(s) # 0 for all s we conclude that eg is orthogonal to N (a(s)) and
a’(s) for all s. Taking the derivative of N(a(s)) - eg = 0 gives

da(s)N(a/(s)) ~eg=0

for all s, and from the fact that N is a unit vector, we also obtain that dq )N (a’(s))
is orthognal to N(a(s)). In particular we have shown that dqo(s)IN(a'(s)) and a'(s) both
are orthogonal to ey and dg(s)IN(e/(s)), hence there must be a scalar A(s) € R such that
da(sN(a/(s)) = A(s)a/(s), i.e., a is a line of curvature.



