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Differential Geometry III, Solutions 8 (Week 18)

Geodesics – 2.

8.1. Find all the geodesics on the flat torus S1(1)×S1(1) ⊂ R4, where S1(1) is the circle
of radius 1 in R2 centered at the origin. Prove that there are infinitely many both
closed and non-closed geodesics through the point (1, 0, 1, 0) ∈ S1(1)× S1(1).

Solution:

The plane R2 and the flat torus T = S1(1)× S1(1) are locally isometric via

f(u, v) = (cosu, sinu, cos v, sin v)

(as it can be easily seen from fu · fu = 1, fu · fv = 0 and fv · fv = 0, and the fact that
E = G = 1, F = 0 are also the coefficients of the first fundamental form of the plane).
Local isometries preserve geodesics, hence images of lines under f are geodesics of T :
examples through (1, 0, 1, 0) are

αr : R −→ T, αp,q(s) = (cos(ps), sin(ps), cos(qs), sin(qs)).

for some p, q ∈ R such that p2 + q2 = 1 (these are images of the lines s 7→ (ps, qs) in
the plane, having unit speed). Note that αr(0) = (1, 0, 1, 0). Moreover, if r = p/q is
rational (w.l.o.g., p, q both rational, say, p = a/c and q = b/c, a, b ∈ Z, c ∈ N), then
αp,q(s + 2πc) = αp,q(s) and hence αp,q is a closed geodesic on T . Obviously, there are
infinitely many such parameters p and q.

If p/q is irrational, then αp,q(s1) = αp,q(s2) implies p(s1 − s2), q(s1 − s2) ∈ 2πZ, i.e.,

2π(s1 − s2) ∈ (p−1Z) ∩ (q−1Z).

But since p/q is irrational, the latter set only contains {0}, and hence s1 = s2, i.e., the
curve αp,q is injective, i.e., the line R is embedded injectively into T . Again, there are
infinitely many such parameters p and q.

8.2. Let H be the hyperbolic plane, i.e. the surface R × (0,∞) with coefficients of the
first fundamental form E(u, v) = G(u, v) = 1/v2 and F (u, v) = 0. Show that the
geodesics in H are the intersections of H with the lines and circles in R2 which meet
the u-axis orthogonally.

Hint: After obtaining the differential equations you may not try to solve them but,
instead, just check that the curves above are indeed geodesics, and then prove that
there are no others.

Solution:

The equation of a geodesic in a local parametrization is
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which reduces here to
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These are equivalent to
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for some constant c ∈ R.

Consider vertical lines first, i.e. u = u0. Then the first equation clearly holds for c = 0,
and the second reduces to v′′ = v′2

v , which also holds if we parametrize a vertical line by
v(s) = kes for any positive k.

Consider now semicircles orthogonal to the real axis, each of these can be parametrized
by

α(s) = (u(s), v(s)) = (u0 + a cos f(s), a sin f(s))

for some u0 ∈ R, a ∈ R>0 and a smooth monotone function f . The first equation then
becomes

f ′(s) = −ca sin f(s),

so assume the function f satisfies this. We need to verify that the second equation is then
also fulfilled. In view of the relation above, we have
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so the second equation also holds.

Finally, for a given point p ∈ H and a tangent vector w ∈ TpH there exists a unique
circle (or line) through p and tangent to w intersecting the real axis orthogonally. By
the uniqueness theorem, this implies that there are no other geodesics except for the ones
described above.

8.3. How many closed geodesics are there on the surface of revolution in R3 obtained by
rotating the curve z = 1/x2, (x > 0) around the z-axis?

Solution:

Assume that α(s) = x(u(s), v(s)) is a closed geodesic, where

x(u, v) = f(v) cosu, f(v) sinu,
1
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,



where f is monotonic and the curve f(v), 1/f (v) has unit speed. The Clairaut relation
then says that

f(v(s)) cos Θ(s) = const,

where Θ(s) is the angle formed by α′(s) and the parallel through α(s). Let zmin and
zmax be the minimal and maximal values of z along α, denote zmin = 1/f(v(smin)) and
zmax = 1/f(v(smax)), these defines the values of s uniquely since f is monotonic. Then
Θ(smin) = Θ(smax) = 0, which implies that f(v(smin)) = f(v(smax)), so zmin = zmax, i.e.
α must be a parallel. However, it is easy to see that no parallel is a geodesic (as f ′(v)
never vanishes). This proves that the surface has no closed geodesics.

8.4. (?) Let S be the cone obtained by rotating the line z = βx (z > 0) around the
z-axis, where β is a positive constant. Let α(s) = (x(s), y(s), z(s)) be a geodesic
on S intersecting the parallel z = 1 at an angle ϑ0. Find the smallest value of z(s).
Investigate whether α has self-intersections.

Solution:

Parametrize the generating curve by (v, 0, βv). Then the Clairaut equation reduces to

v(s) cosϑ(s) = const,

where ϑ(s) is the angle formed by α with the parallel at α(s).The constant here is the
value of v(s) cosϑ at z = 1, i.e. at v = 1/β. Thus, we have an equation

v(s) cosϑ(s) =
cosϑ0
β

.

By symmetry, at the point α(s0) of α closest to the origin the angle ϑ(s0) is equal to zero,
so v(s0) = cosϑ0/β. Therefore,

z(s0) = βv(s0) = cos(ϑ0),

so it is independent of β! Note that if ϑ0 = π/2, then the distance is 0 which means that
the geodesic goes through the apex.

Alternatively, we could use the fact the geodesics on a cone are just images of lines under
the local isometry between the plane and a cone. In particular, by considering the preimage
of the cone under an isometry in R2, one can easily see that α is self-intersecting if and
only if the total angle of the cone in the apex is strictly less that π. By Pythagoras’
Theorem, the latter is equivalent to 2/

√
1 + β2 < 1, which is the same as β >

√
3 or

arctanβ > π/3.

8.5. Let α : I −→ R3 be a curve parametrized by arc length with everywhere non-zero
curvature, and let b(s) be a vector such that the map

x(s, v) = α(s) + vb(s), s ∈ I, v ∈ (−ε, ε),

is a parametrization of a regular surface S for some ε > 0 (S is a ruled surface —
you don’t have to show that the surface is regular).

(a) Is the curve β : (−ε, ε) −→ S given by β(v) = x(s0, v) for some s0 ∈ I a
geodesic? Justify your answer.

(b) Assume now that b(s) is the binormal of the space curve α at α(s). Prove
that α is a geodesic on S (i.e., show that the generating curve is a geodesic on
the ruled surface generated by a curve and its binormal.)



Solution:

(a) Any line in a surface is a geodesic (as in its standard parametrisation, α(s) = p+ sv
has derivatives α′(s) = v and α′′(s) = 0, hence κg = 0.

(b) The normal Nα and binormal b of the curve α are given by

Nα(s) =
1

‖α′′(s)‖
α′′(s) and b(s) = α′(s) ×Nα(s)

(assuming that α′′(s) 6= 0, see Section 4 of the notes of the first term). The two
tangent vectors of the ruled surface are xs = α′ and xv = b, hence the normal vector
N of the surface is

N =
1

‖α′× b‖
α′× b,

and hence, the vector N ×α′ is proportional to (α′× b)×α′ and therefore propor-
tional to b (since α′ and b are orthonormal). Now, b is, by definition, orthogonal to
α′′ and hence κg = α′′ · (N ×α′) = 0.

Alternative solution: You can also verify that α′′(s) is orthogonal to Tα(s)S
for all s by checking

α′′ · xs = α′′ ·α′ !
= 0 and α′′ · xv = α′′ · b !

= 0.

Now, α′′ · α′ = 0 as ‖α′‖2 = 1, which implies 2α′′ · α′ = 0. Moreover, b is by
definition orthogonal to α′′, and hence the second orthogonality condition is also
satisfied.


