Differential Geometry III, Solutions 2 (Week 2)

2.1. The catenary is the plane curve $\boldsymbol{\alpha}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ given by $\boldsymbol{\alpha}(u)=(u, \cosh u)$. It is the curve assumed by a uniform chain hanging under the action of gravity. Sketch the curve. Find its curvature.

Solution:

Since $\boldsymbol{\alpha}(u)=(u, \cosh u)$, we can write

$$
\boldsymbol{\alpha}^{\prime}(u)=(1, \sinh u)
$$

so that

$$
\left\|\alpha^{\prime}(u)\right\|=\sqrt{1+\sinh ^{2} u}=\cosh u
$$

and

$$
\boldsymbol{\alpha}^{\prime \prime}(u)=(0, \cosh u)
$$

Now,

$$
\kappa(u)=\frac{x^{\prime}(u) y^{\prime \prime}(u)-x^{\prime \prime}(u) y^{\prime}(u)}{\left\|\alpha^{\prime}(u)\right\|^{3}}=\frac{\cosh u}{\cosh ^{3} u}=\frac{1}{\cosh ^{2} u}
$$

2.2. Suppose that $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ is a regular curve, but not necessarily unit speed. Write $\boldsymbol{\alpha}(u)=$ $(x(u), y(u))$. Find the formula for the curvature $\kappa(u)$ at the parameter value u in terms of the functions x and y (and their derivatives) at u.

Solution:
We can write the unit tangent vector as

$$
\boldsymbol{t}(u)=\frac{\boldsymbol{\alpha}^{\prime}(u)}{\left\|\alpha^{\prime}(u)\right\|}=\frac{1}{\left\|\alpha^{\prime}(u)\right\|}\left(x^{\prime}(u), y^{\prime}(u)\right)
$$

so the unit normal vector can be written as

$$
\boldsymbol{n}(u)=\frac{1}{\left\|\alpha^{\prime}(u)\right\|}\left(-y^{\prime}(u), x^{\prime}(u)\right)
$$

To compute the curvature $\kappa(u)$ we need to compute the vector $\left.\boldsymbol{t}^{\prime}(s)\right|_{u}$, where s is an arc length parameter and $s=l(u)$ for l to be the lenght function. By the chain rule, we have

$$
\left.\boldsymbol{t}^{\prime}(s)\right|_{u}=\frac{d \boldsymbol{t}}{d u} \frac{d u}{d s}
$$

where

$$
\frac{d u}{d s}=\left(l^{-1}\right)^{\prime}(s)=\frac{1}{l^{\prime}(u)}=\frac{1}{\left\|\alpha^{\prime}(u)\right\|}
$$

Thus,
$\left.\boldsymbol{t}^{\prime}(s)\right|_{u}=\frac{1}{\left\|\alpha^{\prime}(u)\right\|} \frac{d}{d u}\left(\frac{\left(x^{\prime}(u), y^{\prime}(u)\right)}{\left\|\alpha^{\prime}(u)\right\|}\right)=\frac{1}{\left\|\alpha^{\prime}(u)\right\|} \frac{d}{d u}\left(\frac{\left(x^{\prime}(u), y^{\prime}(u)\right)}{\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right)^{1 / 2}}\right)=\frac{x^{\prime}(u) y^{\prime \prime}(u)-x^{\prime \prime}(u) y^{\prime}(u)}{\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right)^{2}}\left(-y^{\prime}(u), x^{\prime}(u)\right)$
(some work is required to obtain the last equality above...)
Therefore,

$$
\kappa(u)=\left.\boldsymbol{n}(u) \cdot \boldsymbol{t}^{\prime}(s)\right|_{u}=\frac{1}{\left\|\alpha^{\prime}(u)\right\|} \frac{\left.x^{\prime}(u) y^{\prime \prime}(u)\right)-x^{\prime \prime}(u) y^{\prime}(u)}{\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right)^{2}}\left\|\left(-y^{\prime}(u), x^{\prime}(u)\right)\right\|^{2}=\frac{x^{\prime}(u) y^{\prime \prime}(u)-x^{\prime \prime}(u) y^{\prime}(u)}{\left(x^{\prime}(u)^{2}+y^{\prime}(u)^{2}\right)^{3 / 2}}
$$

2.3. (\star) Compute the curvature of tractrix (see Exercise 1.6) at $\boldsymbol{\alpha}(u)$.

Solution:

Using the formula above and the expressions for $\boldsymbol{\alpha}^{\prime}(u)$ and $\boldsymbol{\alpha}^{\prime \prime}(u)$

$$
\boldsymbol{\alpha}^{\prime}(u)=\left(\cos u,-\sin u+\frac{1}{\sin u}\right) \quad \text { and } \quad \boldsymbol{\alpha}^{\prime \prime}(u)=\left(-\sin u,-\cos u-\frac{\cos u}{\sin ^{2} u}\right)
$$

we compute

$$
\begin{array}{r}
\kappa(u)=\frac{\cos u\left(-\cos u-\frac{\cos u}{\sin ^{2} u}\right)-(-\sin u)\left(-\sin u+\frac{1}{\sin u}\right)}{\left(\cos ^{2} u+\left(-\sin u+\frac{1}{\sin u}\right)^{2}\right)^{3 / 2}}=\frac{-\cos ^{2} u\left(1+\frac{1}{\sin ^{2} u}\right)-\left(\sin ^{2} u-1\right)}{\left(\cos ^{2} u+\sin ^{2} u-2+\frac{1}{\sin ^{2} u}\right)^{3 / 2}}= \\
=\frac{-\cos ^{2} u-\frac{\cos ^{2} u}{\sin ^{2} u}-\left(-\cos ^{2} u\right)}{\left(\frac{1}{\sin ^{2} u}-1\right)^{3 / 2}}=\frac{-\frac{\cos ^{2} u}{\sin ^{2} u}}{\left(\frac{\cos ^{2} u}{\sin ^{2} u}\right)^{3 / 2}}=-|\tan u|
\end{array}
$$

2.4. Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ be a smooth regular plane curve.
(a) Assume that for some $u_{0} \in I$ the normal line to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$ passes through the origin. Show that for some $\epsilon>0$ the trace $\boldsymbol{\alpha}\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ can be written in polar coordinates as

$$
\boldsymbol{\beta}(\vartheta)=(\rho(\vartheta) \cos \vartheta, \rho(\vartheta) \sin \vartheta)
$$

for an appropriate smooth function $\rho(\vartheta)$, where $\vartheta \in J$ for some interval J.
(b) Assume that all normal lines to $\boldsymbol{\alpha}$ pass through the origin. Show that the trace of $\boldsymbol{\alpha}$ is contained in a circle.
(c) Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{2}$ be given in polar coordinates by

$$
\boldsymbol{\alpha}(\vartheta)=(\rho(\vartheta) \cos \vartheta, \rho(\vartheta) \sin \vartheta), \quad \vartheta \in[a, b]
$$

Show that the length of $\boldsymbol{\alpha}$ is

$$
\int_{a}^{b} \sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} d \vartheta
$$

(d) In the assumptions of (c), show that the curvature of $\boldsymbol{\alpha}$ is

$$
\kappa(\vartheta)=\frac{2\left(\rho^{\prime}\right)^{2}-\rho \rho^{\prime \prime}+\rho^{2}}{\left[\rho^{2}+\left(\rho^{\prime}\right)^{2}\right]^{3 / 2}}
$$

Solution:

(a) Since the normal line at $\boldsymbol{\alpha}\left(u_{0}\right)$ passes through the origin, the tangent vector $\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)$ is orthogonal to the vector $\boldsymbol{\alpha}\left(u_{0}\right)$. Write $\boldsymbol{\alpha}(u)=(x(u), y(u))$, and without loss of generality assume that $x^{\prime}\left(u_{0}\right) \neq 0$ (otherwise rotate the whole picture around the origin by a small angle). By the latter assumption, we have $y^{\prime}\left(u_{0}\right) / x^{\prime}\left(u_{0}\right) \neq \infty$ (geometrically, $y^{\prime}\left(u_{0}\right) / x^{\prime}\left(u_{0}\right)$ is the tangent of the angle $\varphi\left(u_{0}\right)$ forming by the tangent vector $\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)$ and the x-axis).
By smoothness of $\boldsymbol{\alpha}$, we can choose a small ϵ such that for every $u \in\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ the angle $\varphi(u)$ forming by the tangent vector $\boldsymbol{\alpha}^{\prime}(u)$ and the x-axis differs from $\varphi\left(u_{0}\right)$ not too much (say, by $\pi / 100$ at most). This implies that for any $u \in\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ the line passing through the origin and $\boldsymbol{\alpha}(u)$ intersects $\boldsymbol{\alpha}\left(u_{0}-\epsilon, u_{0}+\epsilon\right)$ at $\boldsymbol{\alpha}(u)$ only.
Now, taking $\vartheta=\pi-\varphi(u)$ and $\rho(\vartheta)=\|\boldsymbol{\alpha}(u)\|$ (draw the picture!!!) we obtain the required parametrization.
(b) Take any $u_{0} \in I$ and, as in (a), parametrize $\boldsymbol{\alpha}$ in some neighborhood of $\boldsymbol{\alpha}\left(u_{0}\right)$ by

$$
\boldsymbol{\beta}(\vartheta)=\boldsymbol{\alpha}(u(\vartheta))=(\rho(\vartheta) \cos \vartheta, \rho(\vartheta) \sin \vartheta)
$$

Now

$$
\boldsymbol{\beta}^{\prime}(\vartheta)=\left(\rho^{\prime}(\vartheta) \cos \vartheta-\rho(\vartheta) \sin \vartheta, \rho^{\prime}(\vartheta) \sin \vartheta+\rho(\vartheta) \cos \vartheta\right)
$$

By assumptions, $\boldsymbol{\beta}^{\prime}(\vartheta)$ is orthogonal to $\boldsymbol{\beta}(\vartheta)$, so

$$
0=\boldsymbol{\beta}^{\prime}(\vartheta) \cdot \boldsymbol{\beta}(\vartheta)=\left(\rho^{\prime}(\vartheta) \cos \vartheta-\rho(\vartheta) \sin \vartheta\right) \rho(\vartheta) \cos \vartheta+\left(\rho^{\prime}(\vartheta) \sin \vartheta+\rho(\vartheta) \cos \vartheta\right) \rho(\vartheta) \sin \vartheta=\rho^{\prime} \rho
$$

which implies that $\rho^{\prime} \equiv 0$. Therefore, $\rho(\vartheta)=r$ is constant in some neighborhood of every $u \in I$, so it is constant on I (prove this implication!). Thus, the trace of $\boldsymbol{\beta}$ (which coincides with the trace of $\boldsymbol{\alpha}$) is contained in a circle of radius r centered at the origin.
(c) By definition,

$$
\begin{aligned}
& l(\boldsymbol{\alpha})=\int_{a}^{b}\left\|\boldsymbol{\alpha}^{\prime}(\vartheta)\right\| d \vartheta=\int_{a}^{b} \sqrt{\left(\rho^{\prime}(\vartheta) \cos \vartheta-\rho(\vartheta) \sin \vartheta\right)^{2}+\left(\rho^{\prime}(\vartheta) \sin \vartheta+\rho(\vartheta) \cos \vartheta^{2}\right)} d \vartheta= \\
& =\int_{a}^{b} \sqrt{\rho^{\prime}(\vartheta)^{2}\left(\cos ^{2} \vartheta+\sin ^{2} \vartheta\right)+\rho^{\prime}(\vartheta) \rho(\vartheta)(-2 \cos \vartheta \sin \vartheta+2 \cos \vartheta \sin \vartheta)+\rho(\vartheta)^{2}\left(\sin ^{2} \vartheta+\cos ^{2} \vartheta\right)} d \vartheta= \\
& =\int_{a}^{b} \sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} d \vartheta
\end{aligned}
$$

(d) Apply the formula for the curvature from Exercise 2.2 and the expression for $\boldsymbol{\alpha}^{\prime}(\vartheta)$ from (c).
2.5. Find an arc length parameter for the graphs of the following functions $f, g:(0, \infty) \rightarrow \mathbb{R}$:
(a) $f(x)=a x+b, \quad a, b \in \mathbb{R}$;
$(\mathrm{b})(\star) g(x)=\frac{8}{27} x^{3 / 2}$.

Solution:

Parametrize the curves by $\boldsymbol{\alpha}(x)=(x, f(x))$ and $\boldsymbol{\beta}(x)=(x, g(x))$, and choose $x_{0}=0$.
(a) By definition,

$$
s=l(x)=\int_{0}^{x}\left\|\alpha^{\prime}(u)\right\| d u=\int_{0}^{x}\left\|\left(1, f^{\prime}(u)\right)\right\| d u=\int_{0}^{x} \sqrt{1+a^{2}} d u=x \sqrt{1+a^{2}}
$$

Thus,

$$
x=\frac{s}{\sqrt{1+a^{2}}}
$$

and the curve

$$
\tilde{\boldsymbol{\alpha}}(s)=\left(\frac{s}{\sqrt{1+a^{2}}}, \frac{a s}{\sqrt{1+a^{2}}}+b\right)
$$

is an arc length parametrization of the graph of $f(x)$.
(b) Similar to (a), we write
$s=l(x)=\int_{0}^{x}\left\|\beta^{\prime}(u)\right\| d u=\int_{0}^{x}\left\|\left(1, \frac{4}{9} \sqrt{u}\right)\right\| d u=\int_{0}^{x} \sqrt{1+\frac{16}{81} u} d u=\left.\frac{81}{16} \frac{2}{3}\left(1+\frac{16}{81} u\right)^{3 / 2}\right|_{0} ^{x}=\frac{27}{8}\left(\left(1+\frac{16}{81} x\right)^{3 / 2}-1\right)$,
which implies

$$
x=\frac{81}{16}\left(\left(\frac{8}{27} s+1\right)^{2 / 3}-1\right)
$$

