Differential Geometry III, Solutions 3 (Week 3)

Evolute and involute

3.1. Let $\boldsymbol{\alpha}$ denote the catenary from Exercise 2.1. Show that
(a) the involute of $\boldsymbol{\alpha}$ starting from $(0,1)$ is the tractrix from Exercise 1.6 (with x - and y-axes exchanged and different parametrization);
(b) the evolute of $\boldsymbol{\alpha}$ is the curve given by

$$
\boldsymbol{\beta}(u)=(u-\sinh u \cosh u, 2 \cosh u)
$$

(c) Find the singular points of $\boldsymbol{\beta}$ and give a sketch of its trace.

Solution:

(a) The involute of $\boldsymbol{\alpha}$ has parametrization

$$
\gamma(u)=\boldsymbol{a}(u)-\ell(u) \boldsymbol{t}(u)
$$

Since

$$
\boldsymbol{a}^{\prime}(u)=(1, \sinh u),
$$

we have

$$
\begin{gathered}
\ell(u)=\int_{0}^{u}\left\|\boldsymbol{\alpha}^{\prime}(v)\right\| \mathrm{d} v=\int_{0}^{u} \cosh v \mathrm{~d} v=\sinh u \quad \text { and } \quad \boldsymbol{t}(u)=\frac{1}{\cosh u}(1, \sinh u), \\
\gamma(u)=\boldsymbol{a}(u)-\sinh u \boldsymbol{t}(u)=\left(u-\frac{\sinh u}{\cosh u}, \cosh u-\frac{\sinh ^{2} u}{\cosh u}\right)=\frac{1}{\cosh u}(u \cosh u-\sinh u, 1)
\end{gathered}
$$

so

Exchanging coordinate axes, we obtain a curve parametrized by

$$
\widetilde{\gamma}(u)=\frac{1}{\cosh u}(1, u \cosh u-\sinh u)
$$

The tractrix from Exercise 1.6 is completely characterized by its property (d). Computing the corresponding distance for the curve $\widetilde{\gamma}(u)$ we see that its trace is also a tractrix.
(b) As we have already computed in Exercise 2.1 and in (a),

$$
\boldsymbol{t}(u)=\frac{1}{\cosh u}(1, \sinh u), \quad \kappa(u)=\frac{1}{\cosh ^{2} u}
$$

In particular, $\kappa(u)$ is never zero, and

$$
\boldsymbol{n}(u)=\frac{1}{\cosh u}(-\sinh u, 1)
$$

Now we can compute the evolute:

$$
\boldsymbol{e}(u)=\boldsymbol{\alpha}(u)+\frac{1}{\kappa(u)} \boldsymbol{n}(u)=(u-\sinh u \cosh u, 2 \cosh u)
$$

as required.
(c) The singular points of \boldsymbol{e} correspond to the vertices of $\boldsymbol{\alpha}$. We have

$$
\kappa^{\prime}(u)=\left(\frac{1}{\cosh ^{2} u}\right)^{\prime}=-\frac{2 \sinh u}{\cosh ^{3} u},
$$

so $\kappa^{\prime}(u)=0$ if and only if $u=0$. The only singular point of \boldsymbol{e} is $(0,2)$.
3.2. (\star) Parallels. Let $\boldsymbol{\alpha}$ be a plane curve parametrized by arc length, and let d be a real number. The curve $\boldsymbol{\beta}(u)=\boldsymbol{\alpha}(u)+d \boldsymbol{n}(u)$ is called the parallel to $\boldsymbol{\alpha}$ at distance d.
(a) Show that $\boldsymbol{\beta}$ is a regular curve except for values of u for which $d=1 / \kappa(u)$, where κ is the curvature of $\boldsymbol{\alpha}$.
(b) Show that the set of singular points of all the parallels (i.e., for all $d \in \mathbb{R}$) is the evolute of $\boldsymbol{\alpha}$.

Solution:

(a) Assume $\kappa(u)=0$ or $d \kappa(u) \neq 1$. The latter is automatically satisfied if $\kappa(u)=0$. So we just assume that $d \kappa(u) \neq 1$. We need to show that $\boldsymbol{\beta}^{\prime}(u) \neq 0$. Since $\boldsymbol{\alpha}$ is unit speed, we have

$$
\begin{aligned}
\boldsymbol{\beta}^{\prime}(u)=\boldsymbol{t}(u)+d \boldsymbol{n}^{\prime}(u)=\boldsymbol{t}(u)+d A \boldsymbol{t}^{\prime}(u)= & \boldsymbol{t}(u)+d \kappa(u) A \boldsymbol{n}(u)= \\
= & \boldsymbol{t}(u)+d \kappa(u) A^{2} \boldsymbol{t}(u)=\boldsymbol{t}(u)-d \kappa(u) \boldsymbol{t}(u)=(1-d \kappa(u)) \boldsymbol{t}(u),
\end{aligned}
$$

with $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ and vectors \boldsymbol{t} and \boldsymbol{n} are understood as columns. Note that $\|\boldsymbol{t}(u)\|=1$, i.e., $\boldsymbol{t}(u) \neq 0$. The initial assumption implies that $(1-d \kappa(u)) \neq 0$ and, therefore $\boldsymbol{\beta}^{\prime}(u) \neq 0$, i.e., $\boldsymbol{\beta}(u)$ is regular.
In the case $\kappa(u) \neq 0$ and $d \kappa(u)=1$, i.e., $d=1 / \kappa(u)$, we obviously have $\boldsymbol{\beta}^{\prime}(u)=0$, i.e., $\boldsymbol{\beta}(u)$ is singular.
(b) The evolute is only defined in the case that we have $\kappa(u) \neq 0$ for all u. So we assume this. We have seen in (a) that the singular points of the parallels are precisely those $\boldsymbol{\beta}(u)$ for which we have $d \kappa(u)=1$, i.e., $d=1 / \kappa(u)$. This means that the set fo singular points of all parallels is

$$
\{\boldsymbol{\alpha}(u)+d \boldsymbol{n}(u) \mid u \in I, d=1 / \kappa(u)\}=\left\{\left.\boldsymbol{\alpha}(u)+\frac{1}{\kappa(u)} \boldsymbol{n}(u) \right\rvert\, u \in I\right\}
$$

which is precisely the parametrization of the evolute of $\boldsymbol{\alpha}$.
3.3. Let $\boldsymbol{\alpha}(u): I \rightarrow \mathbb{R}^{2}$ be a smooth regular curve. Suppose there exists $u_{0} \in I$ such that the distance $\|\boldsymbol{\alpha}(u)\|$ from the origin to the trace of $\boldsymbol{\alpha}$ is maximal at u_{0}. Show that the curvature $\kappa\left(u_{0}\right)$ of $\boldsymbol{\alpha}$ at u_{0} satisfies

$$
\left|\kappa\left(u_{0}\right)\right| \geq 1 /\left\|\boldsymbol{\alpha}\left(u_{0}\right)\right\|
$$

Solution:

Note first that the both sides of the inequality we want to prove do not depend on the parametrization, so we may assume without loss of generality that $\boldsymbol{\alpha}$ is parametrized by arc length.
Consider the function $f(u)=\|\boldsymbol{\alpha}\|^{2}$. Since $f(u)$ has a maximum at u_{0}, the first derivative of $f(u)$ at u_{0} vanishes (cf. Exercise 1.4(b)), and the second derivative is non-positive. Thus, we have

$$
0 \geq f^{\prime \prime}\left(u_{0}\right)=\left.(\boldsymbol{\alpha}(u) \cdot \boldsymbol{\alpha}(u))^{\prime \prime}\right|_{u_{0}}=\left.\left(2 \boldsymbol{\alpha}^{\prime}(u) \cdot \boldsymbol{\alpha}(u)\right)^{\prime}\right|_{u_{0}}=\boldsymbol{\alpha}^{\prime \prime}\left(u_{0}\right) \cdot \boldsymbol{\alpha}\left(u_{0}\right)+2\left\|\boldsymbol{\alpha}^{\prime}\left(u_{0}\right)\right\|^{2}=\boldsymbol{\alpha}^{\prime \prime}\left(u_{0}\right) \cdot \boldsymbol{\alpha}\left(u_{0}\right)+2
$$

To satisfy the inequality above, we must have $\boldsymbol{\alpha}^{\prime \prime}\left(u_{0}\right) \cdot \boldsymbol{\alpha}\left(u_{0}\right) \leq-1$, which implies $\left|\boldsymbol{\alpha}^{\prime \prime}\left(u_{0}\right) \cdot \boldsymbol{\alpha}\left(u_{0}\right)\right| \geq 1$, and therefore

$$
\left|\kappa\left(u_{0}\right)\right|=\left\|\boldsymbol{\alpha}^{\prime \prime}\left(u_{0}\right)\right\| \geq 1 /\left\|\boldsymbol{\alpha}\left(u_{0}\right)\right\|
$$

3.4. Contact with circles. The points $(x, y) \in \mathbb{R}^{2}$ of a circle are given as solutions of the equation $C(x, y)=0$ where

$$
C(x, y)=(x-a)^{2}+(y-b)^{2}-\lambda
$$

Let $\boldsymbol{\alpha}=(x(u), y(u))$ be a plane curve. Suppose that the point $\boldsymbol{\alpha}\left(u_{0}\right)$ is also on some circle defined by $C(x, y)$. Then C vanishes at $\left(x\left(u_{0}\right), y\left(u_{0}\right)\right)$ and the equation $g(u)=0$ with

$$
g(u)=C(x(u), y(u))=(x(u)-a)^{2}+(y(u)-b)^{2}-\lambda
$$

has a solution at u_{0}. If u_{0} is a multiple solution of the equation, with $g^{(i)}\left(u_{0}\right)=0$ for $i=1, \ldots, k-1$ but $g^{(k)}\left(u_{0}\right) \neq 0$, we say that the curve $\boldsymbol{\alpha}$ and the circle have k-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(a) Let a circle be tangent to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$. Show that $\boldsymbol{\alpha}$ and the circle have at least 2-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(b) Suppose that $\kappa\left(u_{0}\right) \neq 0$. Show that $\boldsymbol{\alpha}$ and the circle have at least 3-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$ if and only if the center of the circle is the center of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(c) Show that $\boldsymbol{\alpha}$ and the circle have at least 4 -point contact if and only if the center of the circle is the center of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$ and $\boldsymbol{\alpha}\left(u_{0}\right)$ is a vertex of $\boldsymbol{\alpha}$.

Solution:

Denote by $\boldsymbol{c}=(a, b)$ the center of the circle $C(x, y)=0$. Then the function $g(u)=C(x(u), y(u))=$ $(x(u)-a)^{2}+(y(u)-b)^{2}-\lambda$ can be written as

$$
g(u)=(\boldsymbol{\alpha}(u)-\boldsymbol{c}) \cdot(\boldsymbol{\alpha}(u)-\boldsymbol{c})-\lambda
$$

(a) Differentiating $g(u)$, we obtain

$$
g^{\prime}(u)=2(\boldsymbol{\alpha}(u)-\boldsymbol{c}) \cdot \boldsymbol{\alpha}^{\prime}(u)
$$

which vanishes if and only if $\boldsymbol{\alpha}^{\prime}(u)$ is orthogonal to $\boldsymbol{\alpha}(u)-\boldsymbol{c}$. Note that $\boldsymbol{\alpha}(u)-\boldsymbol{c}$ is a radius of the circle, and the vector $\boldsymbol{\alpha}^{\prime}(u)$ is orthogonal to a radius if and only if it is tangent to the circle.
(b) Differentiating $g^{\prime}(u)$, we obtain

$$
g^{\prime \prime}(u)=2(\boldsymbol{\alpha}(u)-\boldsymbol{c}) \cdot \boldsymbol{\alpha}^{\prime \prime}(u)+2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}
$$

Since $\boldsymbol{\alpha}(u)-\boldsymbol{c}$ is orthogonal to $\boldsymbol{\alpha}^{\prime}(u)$, it is collinear with $\boldsymbol{\alpha}^{\prime \prime}(u)$, namely, it is equal to $\pm\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \boldsymbol{n}$. Assume $\kappa(u)>0$ (if $\kappa(u)<0$ the computations are similar), then $\boldsymbol{\alpha}^{\prime \prime}(u)=-\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \boldsymbol{n}$. Thus, $g^{\prime \prime}(u)=0$ if and only if

$$
-2\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \boldsymbol{n} \cdot \boldsymbol{\alpha}^{\prime \prime}(u)+2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}=0
$$

which is equivalent to

$$
\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\|=\frac{\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}}{\boldsymbol{n} \cdot \boldsymbol{\alpha}^{\prime \prime}(u)}
$$

The latter is equal to $1 / \kappa(u)$ (see Exercise 2.2).
(c) Again, assume $\kappa(u)>0$. According to (b), we can write

$$
\begin{aligned}
& g^{\prime \prime}(u)=-2\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \boldsymbol{n} \cdot \boldsymbol{\alpha}^{\prime \prime}(u)+2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}= \\
& \quad=-2\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \kappa(u)\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}+2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}=2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}(1-\kappa(u)\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\|)
\end{aligned}
$$

Differentiating this expression, we get

$$
g^{\prime \prime \prime}(u)=4 \boldsymbol{\alpha}^{\prime \prime}(u) \cdot \boldsymbol{\alpha}^{\prime}(u)(1-\kappa(u)\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\|)+2\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|^{2}\left(-\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\|^{\prime} \kappa(u)-\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\| \kappa^{\prime}(u)\right)
$$

Since the center \boldsymbol{c} of the circle coincides with the center of curvature of $\boldsymbol{\alpha}$, the first summand iz equal to zero. The derivative of $\|\boldsymbol{\alpha}(u)-\boldsymbol{c}\|$ is also zero since $\boldsymbol{\alpha}^{\prime}(u)$ is orthogonal to $\boldsymbol{\alpha}(u)-\boldsymbol{c}$ (cf. (a) or Exercise 1.4(b)). Thus, $g^{\prime \prime \prime}(u)=0$ if and only if $\kappa^{\prime}(u)=0$, or, equivalently, $\boldsymbol{\alpha}(u)$ is a vertex of $\boldsymbol{\alpha}$.

