Differential Geometry III, Solutions 3 (Week 3)

Evolute and involute

3.1. Let α denote the catenary from Exercise 2.1. Show that

(a) the involute of α starting from (0,1) is the tractrix from Exercise 1.6 (with x- and y-axes exchanged and different parametrization);

(b) the evolute of $\boldsymbol{\alpha}$ is the curve given by

$$\boldsymbol{\beta}(u) = (u - \sinh u \cosh u, 2 \cosh u)$$

(c) Find the singular points of β and give a sketch of its trace.

Solution:

(a) The involute of α has parametrization

$$\boldsymbol{\gamma}(u) = \boldsymbol{a}(u) - \ell(u)\boldsymbol{t}(u)$$

Since

$$\boldsymbol{a}'(u) = (1, \sinh u),$$

we have

$$\ell(u) = \int_0^u \|\boldsymbol{\alpha}'(v)\| \, \mathrm{d}v = \int_0^u \cosh v \, \mathrm{d}v = \sinh u \qquad \text{and} \qquad \boldsymbol{t}(u) = \frac{1}{\cosh u} (1, \sinh u),$$

 \mathbf{so}

$$\boldsymbol{\gamma}(u) = \boldsymbol{a}(u) - \sinh u \boldsymbol{t}(u) = \left(u - \frac{\sinh u}{\cosh u}, \cosh u - \frac{\sinh^2 u}{\cosh u}\right) = \frac{1}{\cosh u} (u \cosh u - \sinh u, 1)$$

Exchanging coordinate axes, we obtain a curve parametrized by

$$\widetilde{\gamma}(u) = \frac{1}{\cosh u} (1, u \cosh u - \sinh u)$$

The tractrix from Exercise 1.6 is completely characterized by its property (d). Computing the corresponding distance for the curve $\tilde{\gamma}(u)$ we see that its trace is also a tractrix.

(b) As we have already computed in Exercise 2.1 and in (a),

$$t(u) = \frac{1}{\cosh u}(1, \sinh u), \qquad \kappa(u) = \frac{1}{\cosh^2 u}$$

In particular, $\kappa(u)$ is never zero, and

$$\boldsymbol{n}(u) = \frac{1}{\cosh u}(-\sinh u, 1)$$

Now we can compute the evolute:

$$\boldsymbol{e}(u) = \boldsymbol{\alpha}(u) + \frac{1}{\kappa(u)}\boldsymbol{n}(u) = (u - \sinh u \cosh u, 2 \cosh u)$$

as required.

(c) The singular points of e correspond to the vertices of α . We have

$$\kappa'(u) = \left(\frac{1}{\cosh^2 u}\right)' = -\frac{2\sinh u}{\cosh^3 u},$$

so $\kappa'(u) = 0$ if and only if u = 0. The only singular point of e is (0, 2).

Michaelmas 2016

3.2. (*) *Parallels.* Let α be a plane curve parametrized by arc length, and let d be a real number. The curve $\beta(u) = \alpha(u) + dn(u)$ is called the *parallel* to α at distance d.

(a) Show that β is a regular curve except for values of u for which $d = 1/\kappa(u)$, where κ is the curvature of α .

(b) Show that the set of singular points of all the parallels (i.e., for all $d \in \mathbb{R}$) is the evolute of α .

Solution:

(a) Assume $\kappa(u) = 0$ or $d\kappa(u) \neq 1$. The latter is automatically satisfied if $\kappa(u) = 0$. So we just assume that $d\kappa(u) \neq 1$. We need to show that $\beta'(u) \neq 0$. Since α is unit speed, we have

$$\beta'(u) = \mathbf{t}(u) + d\mathbf{n}'(u) = \mathbf{t}(u) + dA\mathbf{t}'(u) = \mathbf{t}(u) + d\kappa(u)A\mathbf{n}(u) = \mathbf{t}(u) + d\kappa(u)A^2\mathbf{t}(u) = \mathbf{t}(u) - d\kappa(u)\mathbf{t}(u) = (1 - d\kappa(u))\mathbf{t}(u),$$

with $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and vectors \boldsymbol{t} and \boldsymbol{n} are understood as columns. Note that $\|\boldsymbol{t}(u)\| = 1$, i.e., $\boldsymbol{t}(u) \neq 0$. The initial assumption implies that $(1 - d\kappa(u)) \neq 0$ and, therefore $\boldsymbol{\beta}'(u) \neq 0$, i.e., $\boldsymbol{\beta}(u)$ is regular.

In the case $\kappa(u) \neq 0$ and $d\kappa(u) = 1$, i.e., $d = 1/\kappa(u)$, we obviously have $\beta'(u) = 0$, i.e., $\beta(u)$ is singular.

(b) The evolute is only defined in the case that we have $\kappa(u) \neq 0$ for all u. So we assume this. We have seen in (a) that the singular points of the parallels are precisely those $\beta(u)$ for which we have $d\kappa(u) = 1$, i.e., $d = 1/\kappa(u)$. This means that the set fo singular points of all parallels is

$$\{ \boldsymbol{\alpha}(u) + d\boldsymbol{n}(u) \, | \, u \in I, \ d = 1/\kappa(u) \} = \{ \boldsymbol{\alpha}(u) + \frac{1}{\kappa(u)} \boldsymbol{n}(u) \, | \, u \in I \}$$

which is precisely the parametrization of the evolute of α .

3.3. Let $\alpha(u) : I \to \mathbb{R}^2$ be a smooth regular curve. Suppose there exists $u_0 \in I$ such that the distance $||\alpha(u)||$ from the origin to the trace of α is maximal at u_0 . Show that the curvature $\kappa(u_0)$ of α at u_0 satisfies

$$|\kappa(u_0)| \ge 1/||\boldsymbol{\alpha}(u_0)||$$

Solution:

Note first that the both sides of the inequality we want to prove do not depend on the parametrization, so we may assume without loss of generality that α is parametrized by arc length.

Consider the function $f(u) = ||\boldsymbol{\alpha}||^2$. Since f(u) has a maximum at u_0 , the first derivative of f(u) at u_0 vanishes (cf. Exercise 1.4(b)), and the second derivative is non-positive. Thus, we have

$$0 \ge f''(u_0) = (\boldsymbol{\alpha}(u) \cdot \boldsymbol{\alpha}(u))''|_{u_0} = (2\boldsymbol{\alpha}'(u) \cdot \boldsymbol{\alpha}(u))'|_{u_0} = \boldsymbol{\alpha}''(u_0) \cdot \boldsymbol{\alpha}(u_0) + 2\|\boldsymbol{\alpha}'(u_0)\|^2 = \boldsymbol{\alpha}''(u_0) \cdot \boldsymbol{\alpha}(u_0) + 2\|\boldsymbol{\alpha}(u_0)\|^2 = \boldsymbol{\alpha}''(u_0) \cdot \boldsymbol{\alpha}(u_0) + 2\|\boldsymbol{$$

To satisfy the inequality above, we must have $\alpha''(u_0) \cdot \alpha(u_0) \leq -1$, which implies $|\alpha''(u_0) \cdot \alpha(u_0)| \geq 1$, and therefore

$$|\kappa(u_0)| = \|\boldsymbol{\alpha}''(u_0)\| \ge 1/\|\boldsymbol{\alpha}(u_0)\|$$

3.4. Contact with circles. The points $(x, y) \in \mathbb{R}^2$ of a circle are given as solutions of the equation C(x, y) = 0 where

$$C(x, y) = (x - a)^{2} + (y - b)^{2} - \lambda$$

Let $\boldsymbol{\alpha} = (x(u), y(u))$ be a plane curve. Suppose that the point $\boldsymbol{\alpha}(u_0)$ is also on some circle defined by C(x, y). Then C vanishes at $(x(u_0), y(u_0))$ and the equation g(u) = 0 with

$$g(u) = C(x(u), y(u)) = (x(u) - a)^{2} + (y(u) - b)^{2} - \lambda$$

has a solution at u_0 . If u_0 is a multiple solution of the equation, with $g^{(i)}(u_0) = 0$ for i = 1, ..., k-1 but $g^{(k)}(u_0) \neq 0$, we say that the curve α and the circle have k-point contact at $\alpha(u_0)$.

(a) Let a circle be tangent to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$. Show that $\boldsymbol{\alpha}$ and the circle have at least 2-point contact at $\boldsymbol{\alpha}(u_0)$.

(b) Suppose that $\kappa(u_0) \neq 0$. Show that α and the circle have at least 3-point contact at $\alpha(u_0)$ if and only if the center of the circle is the center of curvature of α at $\alpha(u_0)$.

(c) Show that $\boldsymbol{\alpha}$ and the circle have at least 4-point contact if and only if the center of the circle is the center of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}(u_0)$ and $\boldsymbol{\alpha}(u_0)$ is a vertex of $\boldsymbol{\alpha}$.

Solution:

Denote by $\mathbf{c} = (a, b)$ the center of the circle C(x, y) = 0. Then the function $g(u) = C(x(u), y(u)) = (x(u) - a)^2 + (y(u) - b)^2 - \lambda$ can be written as

$$g(u) = (\boldsymbol{\alpha}(u) - \boldsymbol{c}) \cdot (\boldsymbol{\alpha}(u) - \boldsymbol{c}) - \lambda$$

(a) Differentiating g(u), we obtain

$$g'(u) = 2(\boldsymbol{\alpha}(u) - \boldsymbol{c}) \cdot \boldsymbol{\alpha}'(u)$$

which vanishes if and only if $\alpha'(u)$ is orthogonal to $\alpha(u) - c$. Note that $\alpha(u) - c$ is a radius of the circle, and the vector $\alpha'(u)$ is orthogonal to a radius if and only if it is tangent to the circle.

(b) Differentiating g'(u), we obtain

$$g''(u) = 2(\boldsymbol{\alpha}(u) - \boldsymbol{c}) \cdot \boldsymbol{\alpha}''(u) + 2\|\boldsymbol{\alpha}'(u)\|^2$$

Since $\alpha(u) - c$ is orthogonal to $\alpha'(u)$, it is collinear with $\alpha''(u)$, namely, it is equal to $\pm ||\alpha(u) - c||n$. Assume $\kappa(u) > 0$ (if $\kappa(u) < 0$ the computations are similar), then $\alpha''(u) = -||\alpha(u) - c||n$. Thus, g''(u) = 0 if and only if

$$-2\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\|\boldsymbol{n} \cdot \boldsymbol{\alpha}''(u) + 2\|\boldsymbol{\alpha}'(u)\|^2 = 0,$$

which is equivalent to

$$\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\| = \frac{\|\boldsymbol{\alpha}'(u)\|^2}{\boldsymbol{n} \cdot \boldsymbol{\alpha}''(u)}$$

The latter is equal to $1/\kappa(u)$ (see Exercise 2.2).

(c) Again, assume $\kappa(u) > 0$. According to (b), we can write

$$g''(u) = -2\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\|\boldsymbol{n} \cdot \boldsymbol{\alpha}''(u) + 2\|\boldsymbol{\alpha}'(u)\|^2 = \\ = -2\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\|\kappa(u)\|\boldsymbol{\alpha}'(u)\|^2 + 2\|\boldsymbol{\alpha}'(u)\|^2 = 2\|\boldsymbol{\alpha}'(u)\|^2(1 - \kappa(u)\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\|)$$

Differentiating this expression, we get

$$g'''(u) = 4\alpha''(u) \cdot \alpha'(u)(1 - \kappa(u) \| \alpha(u) - c \|) + 2\| \alpha'(u) \|^2 (-\|\alpha(u) - c\|'\kappa(u) - \|\alpha(u) - c\|\kappa'(u))$$

Since the center \boldsymbol{c} of the circle coincides with the center of curvature of $\boldsymbol{\alpha}$, the first summand iz equal to zero. The derivative of $\|\boldsymbol{\alpha}(u) - \boldsymbol{c}\|$ is also zero since $\boldsymbol{\alpha}'(u)$ is orthogonal to $\boldsymbol{\alpha}(u) - \boldsymbol{c}$ (cf. (a) or Exercise 1.4(b)). Thus, g'''(u) = 0 if and only if $\kappa'(u) = 0$, or, equivalently, $\boldsymbol{\alpha}(u)$ is a vertex of $\boldsymbol{\alpha}$.