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Differential Geometry III, Solutions 3 (Week 3)

Evolute and involute

3.1. Let α denote the catenary from Exercise 2.1. Show that

(a) the involute of α starting from (0, 1) is the tractrix from Exercise 1.6 (with x- and y-axes
exchanged and different parametrization);

(b) the evolute of α is the curve given by

β(u) = (u− sinhu coshu, 2 coshu)

(c) Find the singular points of β and give a sketch of its trace.

Solution:

(a) The involute of α has parametrization

γ(u) = a(u)− `(u)t(u)

Since
a′(u) = (1, sinhu),

we have

`(u) =

∫ u

0

‖α′(v)‖ dv =

∫ u

0

cosh v dv = sinhu and t(u) =
1

coshu
(1, sinhu),

so

γ(u) = a(u)− sinhut(u) =

(
u− sinhu

coshu
, coshu− sinh2 u

coshu

)
=

1

coshu
(u coshu− sinhu, 1)

Exchanging coordinate axes, we obtain a curve parametrized by

γ̃(u) =
1

coshu
(1, u coshu− sinhu)

The tractrix from Exercise 1.6 is completely characterized by its property (d). Computing the corresponding
distance for the curve γ̃(u) we see that its trace is also a tractrix.

(b) As we have already computed in Exercise 2.1 and in (a),

t(u) =
1

coshu
(1, sinhu), κ(u) =

1

cosh2 u

In particular, κ(u) is never zero, and

n(u) =
1

coshu
(− sinhu, 1)

Now we can compute the evolute:

e(u) = α(u) +
1

κ(u)
n(u) = (u− sinhu coshu, 2 coshu)

as required.

(c) The singular points of e correspond to the vertices of α. We have

κ′(u) =

(
1

cosh2 u

)′

= −2 sinhu

cosh3 u
,

so κ′(u) = 0 if and only if u = 0. The only singular point of e is (0, 2).



3.2. (?) Parallels. Let α be a plane curve parametrized by arc length, and let d be a real number. The
curve β(u) = α(u) + dn(u) is called the parallel to α at distance d.

(a) Show that β is a regular curve except for values of u for which d = 1/κ(u), where κ is the
curvature of α.

(b) Show that the set of singular points of all the parallels (i.e., for all d ∈ R) is the evolute of α.

Solution:

(a) Assume κ(u) = 0 or dκ(u) 6= 1. The latter is automatically satisfied if κ(u) = 0. So we just assume that
dκ(u) 6= 1. We need to show that β′(u) 6= 0. Since α is unit speed, we have

β′(u) = t(u) + dn′(u) = t(u) + dAt′(u) = t(u) + dκ(u)An(u) =

= t(u) + dκ(u)A2t(u) = t(u)− dκ(u)t(u) = (1− dκ(u))t(u),

with A =

(
0 −1
1 0

)
and vectors t and n are understood as columns. Note that ‖t(u)‖ = 1, i.e., t(u) 6= 0.

The initial assumption implies that (1− dκ(u)) 6= 0 and, therefore β′(u) 6= 0, i.e., β(u) is regular.

In the case κ(u) 6= 0 and dκ(u) = 1, i.e., d = 1/κ(u), we obviously have β′(u) = 0, i.e., β(u) is singular.

(b) The evolute is only defined in the case that we have κ(u) 6= 0 for all u. So we assume this. We have
seen in (a) that the singular points of the parallels are precisely those β(u) for which we have dκ(u) = 1, i.e.,
d = 1/κ(u). This means that the set fo singular points of all parallels is

{α(u) + dn(u) |u ∈ I, d = 1/κ(u)} = {α(u) +
1

κ(u)
n(u) |u ∈ I}

which is precisely the parametrization of the evolute of α.

3.3. Let α(u) : I → R2 be a smooth regular curve. Suppose there exists u0 ∈ I such that the distance
||α(u)|| from the origin to the trace of α is maximal at u0. Show that the curvature κ(u0) of α at
u0 satisfies

|κ(u0)| ≥ 1/||α(u0)||

Solution:

Note first that the both sides of the inequality we want to prove do not depend on the parametrization, so
we may assume without loss of generality that α is parametrized by arc length.

Consider the function f(u) = ‖α‖2. Since f(u) has a maximum at u0, the first derivative of f(u) at u0
vanishes (cf. Exercise 1.4(b)), and the second derivative is non-positive. Thus, we have

0 ≥ f ′′(u0) = (α(u) ·α(u))′′|u0
= (2α′(u) ·α(u))′|u0

= α′′(u0) ·α(u0) + 2‖α′(u0)‖2 = α′′(u0) ·α(u0) + 2

To satisfy the inequality above, we must have α′′(u0) · α(u0) ≤ −1, which implies |α′′(u0) · α(u0)| ≥ 1, and
therefore

|κ(u0)| = ‖α′′(u0)‖ ≥ 1/‖α(u0)‖

3.4. Contact with circles. The points (x, y) ∈ R2 of a circle are given as solutions of the equation
C(x, y) = 0 where

C(x, y) = (x− a)2 + (y − b)2 − λ

Let α = (x(u), y(u)) be a plane curve. Suppose that the point α(u0) is also on some circle defined
by C(x, y). Then C vanishes at (x(u0), y(u0)) and the equation g(u) = 0 with

g(u) = C(x(u), y(u)) = (x(u)− a)2 + (y(u)− b)2 − λ

has a solution at u0. If u0 is a multiple solution of the equation, with g(i)(u0) = 0 for i = 1, . . . , k−1
but g(k)(u0) 6= 0, we say that the curve α and the circle have k-point contact at α(u0).



(a) Let a circle be tangent to α at α(u0). Show that α and the circle have at least 2-point contact
at α(u0).

(b) Suppose that κ(u0) 6= 0. Show that α and the circle have at least 3-point contact at α(u0) if
and only if the center of the circle is the center of curvature of α at α(u0).

(c) Show that α and the circle have at least 4-point contact if and only if the center of the circle is
the center of curvature of α at α(u0) and α(u0) is a vertex of α.

Solution:

Denote by c = (a, b) the center of the circle C(x, y) = 0. Then the function g(u) = C(x(u), y(u)) =
(x(u)− a)2 + (y(u)− b)2 − λ can be written as

g(u) = (α(u)− c) · (α(u)− c)− λ

(a) Differentiating g(u), we obtain
g′(u) = 2(α(u)− c) ·α′(u)

which vanishes if and only if α′(u) is orthogonal to α(u) − c. Note that α(u) − c is a radius of the circle,
and the vector α′(u) is orthogonal to a radius if and only if it is tangent to the circle.

(b) Differentiating g′(u), we obtain

g′′(u) = 2(α(u)− c) ·α′′(u) + 2‖α′(u)‖2

Since α(u)−c is orthogonal to α′(u), it is collinear with α′′(u), namely, it is equal to ±‖α(u)−c‖n. Assume
κ(u) > 0 (if κ(u) < 0 the computations are similar), then α′′(u) = −‖α(u) − c‖n. Thus, g′′(u) = 0 if and
only if

−2‖α(u)− c‖n ·α′′(u) + 2‖α′(u)‖2 = 0,

which is equivalent to

‖α(u)− c‖ =
‖α′(u)‖2

n ·α′′(u)

The latter is equal to 1/κ(u) (see Exercise 2.2).

(c) Again, assume κ(u) > 0. According to (b), we can write

g′′(u) = −2‖α(u)− c‖n ·α′′(u) + 2‖α′(u)‖2 =

= −2‖α(u)− c‖κ(u)‖α′(u)‖2 + 2‖α′(u)‖2 = 2‖α′(u)‖2(1− κ(u)‖α(u)− c‖)

Differentiating this expression, we get

g′′′(u) = 4α′′(u) ·α′(u)(1− κ(u)‖α(u)− c‖) + 2‖α′(u)‖2(−‖α(u)− c‖′κ(u)− ‖α(u)− c‖κ′(u))

Since the center c of the circle coincides with the center of curvature of α, the first summand iz equal to zero.
The derivative of ‖α(u) − c‖ is also zero since α′(u) is orthogonal to α(u) − c (cf. (a) or Exercise 1.4(b)).
Thus, g′′′(u) = 0 if and only if κ′(u) = 0, or, equivalently, α(u) is a vertex of α.


