Differential Geometry III, Homework 3 (Week 3)

Due date for starred problems: Thursday, November 10.

Evolute and involute

3.1. Let $\boldsymbol{\alpha}$ denote the catenary from Exercise 2.1. Show that
(a) the involute of $\boldsymbol{\alpha}$ starting from $(0,1)$ is the tractrix from Exercise 1.6 (with x - and y-axes exchanged and different parametrization);
(b) the evolute of $\boldsymbol{\alpha}$ is the curve given by

$$
\boldsymbol{\beta}(u)=(u-\sinh u \cosh u, 2 \cosh u)
$$

(c) Find the singular points of $\boldsymbol{\beta}$ and give a sketch of its trace.
3.2. (\star) Parallels. Let $\boldsymbol{\alpha}$ be a plane curve parametrized by arc length, and let d be a real number. The curve $\boldsymbol{\beta}(u)=\boldsymbol{\alpha}(u)+d \boldsymbol{n}(u)$ is called the parallel to $\boldsymbol{\alpha}$ at distance d.
(a) Show that $\boldsymbol{\beta}$ is a regular curve except for values of u for which $d=1 / \kappa(u)$, where κ is the curvature of $\boldsymbol{\alpha}$.
(b) Show that the set of singular points of all the parallels (i.e., for all $d \in \mathbb{R}$) is the evolute of $\boldsymbol{\alpha}$.
3.3. Let $\boldsymbol{\alpha}(u): I \rightarrow \mathbb{R}^{2}$ be a smooth regular curve. Suppose there exists $u_{0} \in I$ such that the distance $\|\boldsymbol{\alpha}(u)\|$ from the origin to the trace of $\boldsymbol{\alpha}$ is maximal at u_{0}. Show that the curvature $\kappa\left(u_{0}\right)$ of $\boldsymbol{\alpha}$ at u_{0} satisfies

$$
\left|\kappa\left(u_{0}\right)\right| \geq 1 /\left\|\boldsymbol{\alpha}\left(u_{0}\right)\right\|
$$

3.4. Contact with circles. The points $(x, y) \in \mathbb{R}^{2}$ of a circle are given as solutions of the equation $C(x, y)=0$ where

$$
C(x, y)=(x-a)^{2}+(y-b)^{2}-\lambda
$$

Let $\boldsymbol{\alpha}=(x(u), y(u))$ be a plane curve. Suppose that the point $\boldsymbol{\alpha}\left(u_{0}\right)$ is also on some circle defined by $C(x, y)$. Then C vanishes at $\left(x\left(u_{0}\right), y\left(u_{0}\right)\right)$ and the equation $g(u)=0$ with

$$
g(u)=C(x(u), y(u))=(x(u)-a)^{2}+(y(u)-b)^{2}-\lambda
$$

has a solution at u_{0}. If u_{0} is a multiple solution of the equation, with $g^{(i)}\left(u_{0}\right)=0$ for $i=1, \ldots, k-1$ but $g^{(k)}\left(u_{0}\right) \neq 0$, we say that the curve $\boldsymbol{\alpha}$ and the circle have k-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(a) Let a circle be tangent to $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$. Show that $\boldsymbol{\alpha}$ and the circle have at least 2-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(b) Suppose that $\kappa\left(u_{0}\right) \neq 0$. Show that $\boldsymbol{\alpha}$ and the circle have at least 3-point contact at $\boldsymbol{\alpha}\left(u_{0}\right)$ if and only if the centre of the circle is the centre of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$.
(c) Show that $\boldsymbol{\alpha}$ and the circle have at least 4-point contact if and only if the centre of the circle is the centre of curvature of $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{0}\right)$ and $\boldsymbol{\alpha}\left(u_{0}\right)$ is a vertex of $\boldsymbol{\alpha}$.

