Differential Geometry III, Solutions 5 (Week 5)

Space curves - 2

5.1. (*) A curve $\alpha : I \to \mathbb{R}^3$ is called a *(generalized) helix* if its tangent lines make a constant angle with a fixed direction in \mathbb{R}^3 .

(a) Prove that the curve

$$\boldsymbol{\alpha}(s) = \left(\frac{a}{c} \int_{s_0}^s \sin \vartheta(v) \, \mathrm{d}v, \frac{a}{c} \int_{s_0}^s \cos \vartheta(v) \, \mathrm{d}v, \frac{b}{c}s\right),$$

with $s_0 \in I$, $c^2 = a^2 + b^2$, $a \neq 0$, $b \neq 0$ and $\vartheta'(s) > 0$ is a (generalized) helix.

(b) Assume that $\alpha : I \to \mathbb{R}^3$ is a regular curve with $\tau(s) \neq 0$ for all $s \in I$. Prove that α is a (generalized) helix if and only if κ/τ is constant.

Solution:

(a) We have

$$t = \alpha'(s) = \left(\frac{a}{c}\sin\vartheta(s), \frac{a}{c}\cos\vartheta(s), \frac{b}{c}\right),$$

so ||t|| = 1, that is α is parametrized by arc length.

One way to show that α is a (generalized) helix is to use (b). For this, we compute

$$\mathbf{t}' = \mathbf{\alpha}'(s) = \left(\frac{a}{c}\vartheta'(s)\cos\vartheta(s), -\frac{a}{c}\vartheta'(s)\sin\vartheta(s), 0\right) = \frac{a}{c}\vartheta'(s)\left(\cos\vartheta(s), -\sin\vartheta(s), 0\right).$$

We may assume without loss of generality that $\frac{a}{c}\vartheta'(s) > 0$ and take $\kappa(s) = \frac{a}{c}\vartheta'(s)$ and $\boldsymbol{n} = (\cos\vartheta(s), -\sin\vartheta(s), 0)$. Then

$$\boldsymbol{b} = \boldsymbol{t} \times \boldsymbol{n} = \left(\frac{b}{c}\sin\vartheta(s), \frac{b}{c}\cos\vartheta(s), -\frac{a}{c}\right),$$

and

$$\boldsymbol{b}' = \left(\frac{b}{c}\vartheta'(s)\cos\vartheta(s), -\frac{b}{c}\sin\vartheta(s), 0\right) = \frac{b}{c}\vartheta'(s)\boldsymbol{n}$$

Hence $\tau = \frac{b}{c} \vartheta'(s)$ and $\kappa/\tau = \frac{a}{b}$ is constant. It follows from part (b) that α is a generalized helix.

A much simpler way to solve the problem is to guess the vector \boldsymbol{v} such that $\boldsymbol{t} \cdot \boldsymbol{v}$ is constant. Indeed, one can see that z-coordinate of \boldsymbol{t} is equal to b/c, i.e. it is constant. Thus, \boldsymbol{t} makes a constant angle with vector (0,0,1), i.e. with z-axis.

(b) We may assume that α is parametrized by arc length. By definition, α is a (generalized) helix if and only if there exists a constant vector v such that

$$\frac{\boldsymbol{t} \cdot \boldsymbol{v}}{\|\boldsymbol{t}\| \|\boldsymbol{v}\|} = \frac{\boldsymbol{t} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|} = \text{const}$$

We may assume that \boldsymbol{v} has unit length, so the equality above is equivalent to

$$t \cdot v = \text{const}$$

Equivalently, α is a (generalized) helix if and only if there exists a constant vector v such that

$$t' \cdot v = 0 \iff n \cdot v = 0 \iff v = ct + db$$

Since v has unit length, we have $c^2 + d^2 = 1$. Then v makes a constant angle with t if and only if c = constThe vector v is a constant vector if and only if (ct + db)' = 0, that is if and only if

$$c't + ct' + d'b + db' = c\kappa n + d'b + d\tau n = d'b + (c\kappa + d\tau)n = 0$$

which holds if and only if

$$d' = c\kappa + d\tau = 0.$$

if and only if $\kappa/\tau = -d/c = \text{const}$

5.2. Let α , β be regular curves in \mathbb{R}^3 such that, for each u, the principal normals $n_{\alpha}(u)$ and $n_{\beta}(u)$ are parallel. Prove that the angle between $t_{\alpha}(u)$ and $t_{\beta}(u)$ is independent of u. Prove also that if the line through $\alpha(u)$ in direction $n_{\alpha(u)}$ coincides with the line through $\beta(u)$ in direction $n_{\beta(u)}$ then

$$\boldsymbol{\beta}(u) = \boldsymbol{\alpha}(u) + r\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$$

for some real number r.

Solution:

We may assume that one of the curves (say, α) is parametrized by arc length. Let

$$f(u) = \boldsymbol{t}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)$$

We want to show that $f'(u) \equiv 0$.

$$f'(u) = \mathbf{t}'_{\alpha}(u) \cdot \mathbf{t}_{\beta}(u) + \mathbf{t}_{\alpha}(u) \cdot \mathbf{t}'_{\beta}(u) = \kappa_{\alpha}(u)\mathbf{n}_{\alpha}(u) \cdot \mathbf{t}_{\beta}(u) + \mathbf{t}_{\alpha}(u) \cdot \|\beta'(u)\|\kappa_{\beta}(u)\mathbf{n}_{\beta}(u) = \mathbf{n}_{\alpha}(u) \cdot (\kappa_{\alpha}(u)\mathbf{t}_{\beta}(u) + \lambda(u)\|\beta'(u)\|\kappa_{\beta}\mathbf{t}_{\alpha}(u))$$

for the function $\lambda(u)$ defined by $\boldsymbol{n}_{\boldsymbol{\beta}}(u) = \lambda(u)\boldsymbol{n}_{\boldsymbol{\alpha}}$. Now, $\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\alpha}}(u) = 0$, and

$$\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u) = \lambda^{-1}(u)\boldsymbol{n}_{\boldsymbol{\beta}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u) = 0,$$

so $f'(u) \equiv 0$.

Now assume the lines $\{ \alpha(u) + \mu_1 n_{\alpha}(u) | \mu_1 \in \mathbb{R} \}$ and $\{ \beta(u) + \mu_2 n_{\beta}(u) | \mu_2 \in \mathbb{R} \}$ coincide, i.e.

$$\boldsymbol{\alpha}(u) - \boldsymbol{\beta}(u) = \mu(u)\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$$

for some $\mu(u) \in \mathbb{R}$. We want to show that $\mu(u)$ is constant. We can write

$$\mu(u) = \boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot (\boldsymbol{\alpha}(u) - \boldsymbol{\beta}(u))$$

therefore

$$\mu'(u) = \boldsymbol{n}_{\boldsymbol{\alpha}}'(u) \cdot (\boldsymbol{\alpha}(u) - \boldsymbol{\beta}(u)) + n_{\boldsymbol{\alpha}}(u) \cdot (\boldsymbol{t}_{\boldsymbol{\alpha}}(u) - \boldsymbol{t}_{\boldsymbol{\beta}}(u))$$

The first summand vanishes since $\alpha(u) - \beta(u) = \mu(u)n_{\alpha}(u)$ is parallel to $n_{\alpha}(u)$, and $n'_{\alpha}(u) \cdot n_{\alpha}(u) = 0$. The second summand vanishes since $n_{\alpha}(u)$ is parallel to $n_{\beta}(u)$.

5.3. (*) Let α be the curve in \mathbb{R}^3 given by

$$\boldsymbol{\alpha}(u) = e^u(\cos u, \sin u, 1), \qquad u \in \mathbb{R}.$$

If $0 < \lambda_0 < \lambda_1$, find the length of the segment of α which lies between the planes $z = \lambda_0$ and $z = \lambda_1$. Show also that the curvature and torsion of α are both inversely proportional to e^u .

Solution:

We have

$$\boldsymbol{\alpha}'(u) = e^u(\cos u, \sin u, 1) + e^u(-\sin u, \cos u, 0) = (e^u \cos u - e^u \sin u, e^u \sin u + e^u \cos u, e^u),$$
$$\|\boldsymbol{\alpha}'(u)\| = e^u \sqrt{(\cos u - \sin u)^2 + (\sin u + \cos u)^2 + 1} = e^u \sqrt{3}.$$

We first need to find the parameter values when $\boldsymbol{\alpha}$ intersects the planes $z = \lambda_0$ and $z = \lambda_1$. The z-component of $\boldsymbol{\alpha}(u)$ is e^u , so $e^u = \lambda$ implies $u = \ln \lambda$. Then the arc length ℓ between where the curve intersects the planes $z = \lambda_0$ and $z = \lambda_1$ with $0 < \lambda_0 < \lambda_1$ is given by integrating $\|\boldsymbol{\alpha}'(u)\|$ between the corresponding parameter values, namely $u_0 = \ln \lambda_0$ and $u_1 = \ln \lambda_1$. So

$$\ell = \int_{u_0}^{u_1} \|\boldsymbol{\alpha}'(u)\| \, \mathrm{d}u = \int_{u_0}^{u_1} \sqrt{3}e^u \, \mathrm{d}u = \sqrt{3} \left[e^u\right]_{u_0}^{u_1} = \sqrt{3}(e^{u_1} - e^{u_0}) = \sqrt{3}(\lambda_1 - \lambda_0).$$

To compute the curvature we use the formula

$$\kappa = \frac{\| \boldsymbol{\alpha}' \times \boldsymbol{\alpha}'' \|}{\| \boldsymbol{\alpha}' \|^3}.$$

As a result, we obtain

$$\kappa(u) = \frac{\sqrt{2}}{3} \cdot e^{-u}$$

which has the desired form

$$\operatorname{const} \cdot \frac{1}{e^u}.$$

Now one can note that $\boldsymbol{\alpha}$ is a generalized helix: indeed, the cosine of the angle formed by $\boldsymbol{\alpha}'(u)$ with vector (0,0,1) is

$$\frac{(e^u \cos u - e^u \sin u, e^u \sin u + e^u \cos u, e^u) \cdot (0, 0, 1)}{\sqrt{3}e^u} = \frac{1}{\sqrt{3}}$$

which is constant. Thus, by Exercise 5.1, the torsion is also proportional to $1/e^u$.

Alternatively, one can compute the torsion explicitly to see that

$$\tau(u) = -\frac{1}{3} \cdot e^{-u}$$

which is also of required form.

5.4. Let α be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ . Show that if the trace of α lies on a sphere then

$$\frac{\tau}{\kappa} = \left(\frac{\kappa'}{\tau\kappa^2}\right)'.$$

Is the converse true?

Solution: Suppose that α lies on the sphere with centre c and radius r. Then

$$(\boldsymbol{\alpha} - \boldsymbol{c}) \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) = r^2 \tag{(*)}$$

Differentiating (*) once we get

$$\boldsymbol{t} \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) = 0.$$

This means that there exist $x, y \in \mathbb{R}$ such that

$$\boldsymbol{\alpha} - \boldsymbol{c} = x\boldsymbol{n} + y\boldsymbol{b}.$$

Differentiating the equality above we obtain

$$\boldsymbol{t} = x'\boldsymbol{n} + x\boldsymbol{n}' + y'\boldsymbol{b} + y\boldsymbol{b}' = x'\boldsymbol{n} + x(-\kappa\boldsymbol{t} - \tau\boldsymbol{b}) + y'\boldsymbol{b} + y\tau\boldsymbol{n} = -x\kappa\boldsymbol{t} + (x' + y\tau)\boldsymbol{n} + (-x\tau + y')\boldsymbol{b}$$

In particular, this implies that

$$-x\tau + y' = 0$$

Let us find x and y. Differentiating (*) twice we get

$$\kappa \boldsymbol{n} \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) + 1 = 0 \tag{(**)}$$

Thus,

$$\kappa x+1=0\iff x=-\frac{1}{\kappa}.$$

Differentiating (**) we get

$$\kappa' \boldsymbol{n} \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) + \kappa (-\kappa \boldsymbol{t} - \tau \boldsymbol{b}) \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) + \kappa \boldsymbol{n} \cdot \boldsymbol{t} = 0$$

Since $\boldsymbol{n} \cdot \boldsymbol{t} = 0$, this implies

$$\kappa' \boldsymbol{n} \cdot \left(-\frac{1}{\kappa}\boldsymbol{n} + y\boldsymbol{b}\right) + \kappa(-\kappa \boldsymbol{t} - \tau \boldsymbol{b}) \cdot \left(-\frac{1}{\kappa}\boldsymbol{n} + y\boldsymbol{b}\right) = 0,$$

which gives

$$-\frac{\kappa'}{\kappa} - \kappa \tau y = 0$$

Hence,

$$y=-\frac{\kappa'}{\kappa^2\tau}$$

Now the equality $-x\tau + y' = 0$ obtained above becomes

$$\frac{\tau}{\kappa} = \left(\frac{\kappa'}{\tau\kappa^2}\right)'.$$

The converse is also true (see e.g. the solution of Exercise 5.5.(b))

5.5. Let α be a regular curve parametrized by arc length with $\kappa > 0$ and $\tau \neq 0$. Denote by \boldsymbol{n} and \boldsymbol{b} the principal normal and the binormal of α .

(a) If $\boldsymbol{\alpha}$ lies on a sphere with center $\boldsymbol{c} \in \mathbb{R}^3$ and radius r > 0, show that

$$\boldsymbol{\alpha} - \boldsymbol{c} = -\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b},$$

where $\rho = 1/\kappa$ and $\sigma = -1/\tau$. Deduce that $r^2 = \rho^2 + (\rho'\sigma)^2$.

(b) Conversely, if $\rho^2 + (\rho'\sigma)^2$ has constant value r^2 and $\rho' \neq 0$, show that α lies on a sphere of radius r.

Hint: Show that the curve $\boldsymbol{\alpha} + \rho \boldsymbol{n} + \rho' \sigma \boldsymbol{b}$ is constant.

Solution:

(a) Suppose that α lies on the sphere with center c and radius r. From the solution of Exercise 5.4 we know that

$$\alpha - c = xn + yb$$

where

$$x = -\frac{1}{\kappa}, \qquad y = -\frac{\kappa'}{\kappa^2 \tau}$$

We have thus

$$oldsymbol{lpha} - oldsymbol{c} = -rac{1}{\kappa}oldsymbol{n} - rac{\kappa'}{\kappa^2 au}oldsymbol{b} = -
hooldsymbol{n} -
ho'\sigmaoldsymbol{b},$$

where $\rho = 1/\kappa$ and $\sigma = -1/\tau$. Now,

$$r^{2} = (\boldsymbol{\alpha} - \boldsymbol{c}) \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) = (-\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b}) \cdot (-\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b}) = \rho^{2} + (\rho' \sigma)^{2}.$$

(b) Suppose that $\rho^2 + (\rho'\sigma)^2 = r^2$. Differentiating we get

$$\rho'(\rho + (\rho'\sigma)'\sigma) = 0.$$

As $\rho' \neq 0$, it follows that

or equivalently,

$$-\rho\tau + (\rho'\sigma)' = 0$$

 $\rho + (\rho'\sigma)'\sigma = 0$

The curve $\alpha + \rho n + \rho' \sigma b$ is constant (i.e, is a point) if and only if $(\alpha + \rho n + \rho' \sigma b)' = 0$. We have,

$$\begin{aligned} (\boldsymbol{\alpha} + \rho \boldsymbol{n} + \rho' \sigma \boldsymbol{b})' &= \boldsymbol{t} + \rho' \boldsymbol{n} + \rho \boldsymbol{n}' + (\rho' \sigma)' \boldsymbol{b} + (\rho' \sigma) \boldsymbol{b}' \\ &= \boldsymbol{t} + \rho' \boldsymbol{n} + \rho(-\kappa \boldsymbol{t} - \tau \boldsymbol{b}) + (\rho' \sigma)' \boldsymbol{b} + (\rho' \sigma) \tau \boldsymbol{n} \\ &= (1 - \rho \kappa) \boldsymbol{t} + (\rho' + \rho' \sigma \tau) \boldsymbol{n} + (-\tau \rho + (\rho' \sigma)') \boldsymbol{b} \\ &= 0 \boldsymbol{t} + 0 \boldsymbol{n} + 0 \boldsymbol{b} \\ &= 0. \end{aligned}$$

We conclude that $\alpha + \rho n + \rho' \sigma b = c$, for some point c. Then

$$\boldsymbol{\alpha} - \boldsymbol{c} = -\rho \boldsymbol{n} - \rho' \sigma \boldsymbol{b}$$

and as $\rho^2 + (\rho'\sigma)^2$ has constant value r^2 , $(\boldsymbol{\alpha} - \boldsymbol{c}) \cdot (\boldsymbol{\alpha} - \boldsymbol{c}) = r^2$. This means that the curve $\boldsymbol{\alpha}$ lies on the sphere with center \boldsymbol{c} and radius r.