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Differential Geometry III, Solutions 5 (Week 5)

Space curves - 2

5.1. (?) A curve α : I → R3 is called a (generalized) helix if its tangent lines make a constant angle with
a fixed direction in R3.

(a) Prove that the curve

α(s) =
(a
c

∫ s

s0

sinϑ(v) dv,
a

c

∫ s

s0

cosϑ(v) dv,
b

c
s
)
,

with s0 ∈ I, c2 = a2 + b2, a 6= 0, b 6= 0 and ϑ′(s) > 0 is a (generalized) helix.

(b) Assume that α : I → R3 is a regular curve with τ(s) 6= 0 for all s ∈ I. Prove that α is a
(generalized) helix if and only if κ/τ is constant.

Solution:

(a) We have

t = α′(s) =

(
a

c
sinϑ(s),

a

c
cosϑ(s),

b

c

)
,

so ‖t‖ = 1, that is α is parametrized by arc length.

One way to show that α is a (generalized) helix is to use (b). For this, we compute

t′ = α′(s) =
(a
c
ϑ′(s) cosϑ(s), −a

c
ϑ′(s) sinϑ(s), 0

)
=
a

c
ϑ′(s) (cosϑ(s),− sinϑ(s), 0) .

We may assume without loss of generality that a
cϑ
′(s) > 0 and take κ(s) = a

cϑ
′(s) and n = (cosϑ(s),− sinϑ(s), 0) .

Then

b = t× n =

(
b

c
sinϑ(s),

b

c
cosϑ(s),−a

c

)
,

and

b′ =

(
b

c
ϑ′(s) cosϑ(s), −b

c
sinϑ(s), 0

)
=
b

c
ϑ′(s)n.

Hence τ = b
cϑ
′(s) and κ/τ = a

b is constant. It follows from part (b) that α is a generalized helix.

A much simpler way to solve the problem is to guess the vector v such that t · v is constant. Indeed, one
can see that z-coordinate of t is equal to b/c, i.e. it is constant. Thus, t makes a constant angle with vector
(0, 0, 1), i.e. with z-axis.

(b) We may assume that α is parametrized by arc length. By definition, α is a (generalized) helix if and only
if there exists a constant vector v such that

t · v
‖t‖ ‖v‖

=
t · v
‖v‖

= const

We may assume that v has unit length, so the equality above is equivalent to

t · v = const

Equivalently, α is a (generalized) helix if and only if there exists a constant vector v such that

t′ · v = 0 ⇐⇒ n · v = 0 ⇐⇒ v = ct+ db.



Since v has unit length, we have c2 + d2 = 1. Then v makes a constant angle with t if and only if c = const

The vector v is a constant vector if and only if (ct+ db)′ = 0, that is if and only if

c′t+ ct′ + d′b+ db′ = cκn+ d′b+ dτn = d′b+ (cκ+ dτ)n = 0,

which holds if and only if
d′ = cκ+ dτ = 0,

if and only if κ/τ = −d/c = const

5.2. Let α, β be regular curves in R3 such that, for each u, the principal normals nα(u) and nβ(u) are
parallel. Prove that the angle between tα(u) and tβ(u) is independent of u. Prove also that if the
line through α(u) in direction nα(u) coincides with the line through β(u) in direction nβ(u) then

β(u) = α(u) + rnα(u)

for some real number r.

Solution:

We may assume that one of the curves (say, α) is parametrized by arc length. Let

f(u) = tα(u) · tβ(u)

We want to show that f ′(u) ≡ 0.

f ′(u) = t′α(u) · tβ(u) + tα(u) · t′β(u) = κα(u)nα(u) · tβ(u) + tα(u) · ‖β′(u)‖κβ(u)nβ(u) =

= nα(u) · (κα(u)tβ(u) + λ(u)‖β′(u)‖κβtα(u))

for the function λ(u) defined by nβ(u) = λ(u)nα. Now, nα(u) · tα(u) = 0, and

nα(u) · tβ(u) = λ−1(u)nβ(u) · tβ(u) = 0,

so f ′(u) ≡ 0.

Now assume the lines {α(u) + µ1nα(u) |µ1 ∈ R} and {β(u) + µ2nβ(u) |µ2 ∈ R} coincide, i.e.

α(u)− β(u) = µ(u)nα(u)

for some µ(u) ∈ R. We want to show that µ(u) is constant. We can write

µ(u) = nα(u) · (α(u)− β(u)),

therefore
µ′(u) = n′α(u) · (α(u)− β(u)) + nα(u) · (tα(u)− tβ(u))

The first summand vanishes since α(u)−β(u) = µ(u)nα(u) is parallel to nα(u), and n′α(u) ·nα(u) = 0. The
second summand vanishes since nα(u) is parallel to nβ(u).

5.3. (?) Let α be the curve in R3 given by

α(u) = eu(cosu, sinu, 1), u ∈ R.

If 0 < λ0 < λ1, find the length of the segment of α which lies between the planes z = λ0 and z = λ1.
Show also that the curvature and torsion of α are both inversely proportional to eu.

Solution:

We have

α′(u) = eu(cosu, sinu, 1) + eu(− sinu, cosu, 0) = (eu cosu− eu sinu, eu sinu+ eu cosu, eu),

‖α′(u)‖ = eu
√

(cosu− sinu)2 + (sinu+ cosu)2 + 1 = eu
√

3.



We first need to find the parameter values when α intersects the planes z = λ0 and z = λ1. The z-component
of α(u) is eu, so eu = λ implies u = lnλ. Then the arc length ` between where the curve intersects the planes
z = λ0 and z = λ1 with 0 < λ0 < λ1 is given by integrating ‖α′(u)‖ between the corresponding parameter
values, namely u0 = lnλ0 and u1 = lnλ1. So

` =

∫ u1

u0

‖α′(u)‖ du =

∫ u1

u0

√
3eu du =

√
3
[
eu
]u1

u0
=
√

3(eu1 − eu0) =
√

3(λ1 − λ0).

To compute the curvature we use the formula

κ =
‖α′ ×α′′‖
‖α′‖3

.

As a result, we obtain

κ(u) =

√
2

3
· e−u

which has the desired form

const · 1

eu
.

Now one can note that α is a generalized helix: indeed, the cosine of the angle formed by α′(u) with vector
(0, 0, 1) is

(eu cosu− eu sinu, eu sinu+ eu cosu, eu) · (0, 0, 1)√
3eu

=
1√
3

which is constant. Thus, by Exercise 5.1, the torsion is also proportional to 1/eu.

Alternatively, one can compute the torsion explicitly to see that

τ(u) = −1

3
· e−u

which is also of required form.

5.4. Let α be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ .
Show that if the trace of α lies on a sphere then

τ

κ
=
( κ′

τκ2

)′
.

Is the converse true?

Solution: Suppose that α lies on the sphere with centre c and radius r. Then

(α− c) · (α− c) = r2 (∗)

Differentiating (∗) once we get
t · (α− c) = 0.

This means that there exist x, y ∈ R such that

α− c = xn+ yb.

Differentiating the equality above we obtain

t = x′n+ xn′ + y′b+ yb′ = x′n+ x(−κt− τb) + y′b+ yτn = −xκt+ (x′ + yτ)n+ (−xτ + y′)b

In particular, this implies that
−xτ + y′ = 0

Let us find x and y. Differentiating (∗) twice we get

κn · (α− c) + 1 = 0 (∗∗)

Thus,

κx+ 1 = 0 ⇐⇒ x = − 1

κ
.



Differentiating (∗∗) we get

κ′n · (α− c) + κ(−κt− τb) · (α− c) + κn · t = 0

Since n · t = 0, this implies

κ′n · (− 1

κ
n+ yb) + κ(−κt− τb) · (− 1

κ
n+ yb) = 0,

which gives

−κ
′

κ
− κτy = 0.

Hence,

y = − κ′

κ2τ

Now the equality −xτ + y′ = 0 obtained above becomes

τ

κ
=
( κ′

τκ2

)′
.

The converse is also true (see e.g. the solution of Exercise 5.5.(b))

5.5. Let α be a regular curve parametrized by arc length with κ > 0 and τ 6= 0. Denote by n and b the
principal normal and the binormal of α.

(a) If α lies on a sphere with center c ∈ R3 and radius r > 0, show that

α− c = −ρn− ρ′σb,

where ρ = 1/κ and σ = −1/τ . Deduce that r2 = ρ2 + (ρ′σ)2.

(b) Conversely, if ρ2 + (ρ′σ)2 has constant value r2 and ρ′ 6= 0, show that α lies on a sphere of
radius r.

Hint: Show that the curve α+ ρn+ ρ′σb is constant.

Solution:

(a) Suppose that α lies on the sphere with center c and radius r. From the solution of Exercise 5.4 we know
that

α− c = xn+ yb,

where

x = − 1

κ
, y = − κ′

κ2τ

We have thus

α− c = − 1

κ
n− κ′

κ2τ
b = −ρn− ρ′σb,

where ρ = 1/κ and σ = −1/τ . Now,

r2 = (α− c) · (α− c) = (−ρn− ρ′σb) · (−ρn− ρ′σb) = ρ2 + (ρ′σ)2.

(b) Suppose that ρ2 + (ρ′σ)2 = r2. Differentiating we get

ρ′(ρ+ (ρ′σ)′σ) = 0.

As ρ′ 6= 0, it follows that
ρ+ (ρ′σ)′σ = 0

or equivalently,
−ρτ + (ρ′σ)′ = 0



The curve α+ ρn+ ρ′σb is constant (i.e, is a point) if and only if (α+ ρn+ ρ′σb)′ = 0. We have,

(α+ ρn+ ρ′σb)′ = t+ ρ′n+ ρn′ + (ρ′σ)′b+ (ρ′σ)b′

= t+ ρ′n+ ρ(−κt− τb) + (ρ′σ)′b+ (ρ′σ)τn
= (1− ρκ)t+ (ρ′ + ρ′στ)n+ (−τρ+ (ρ′σ)′)b
= 0t+ 0n+ 0b
= 0.

We conclude that α+ ρn+ ρ′σb = c, for some point c. Then

α− c = −ρn− ρ′σb

and as ρ2 + (ρ′σ)2 has constant value r2, (α − c) · (α − c) = r2. This means that the curve α lies on the
sphere with center c and radius r.


