Differential Geometry III, Solutions 5 (Week 5)

Space curves - 2

5.1. (\star) A curve $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is called a (generalized) helix if its tangent lines make a constant angle with a fixed direction in \mathbb{R}^{3}.
(a) Prove that the curve

$$
\boldsymbol{\alpha}(s)=\left(\frac{a}{c} \int_{s_{0}}^{s} \sin \vartheta(v) \mathrm{d} v, \frac{a}{c} \int_{s_{0}}^{s} \cos \vartheta(v) \mathrm{d} v, \frac{b}{c} s\right)
$$

with $s_{0} \in I, c^{2}=a^{2}+b^{2}, a \neq 0, b \neq 0$ and $\vartheta^{\prime}(s)>0$ is a (generalized) helix.
(b) Assume that $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is a regular curve with $\tau(s) \neq 0$ for all $s \in I$. Prove that $\boldsymbol{\alpha}$ is a (generalized) helix if and only if κ / τ is constant.

Solution:

(a) We have

$$
\boldsymbol{t}=\boldsymbol{\alpha}^{\prime}(s)=\left(\frac{a}{c} \sin \vartheta(s), \frac{a}{c} \cos \vartheta(s), \frac{b}{c}\right)
$$

so $\|\boldsymbol{t}\|=1$, that is $\boldsymbol{\alpha}$ is parametrized by arc length.
One way to show that $\boldsymbol{\alpha}$ is a (generalized) helix is to use (b). For this, we compute

$$
\boldsymbol{t}^{\prime}=\boldsymbol{\alpha}^{\prime}(s)=\left(\frac{a}{c} \vartheta^{\prime}(s) \cos \vartheta(s),-\frac{a}{c} \vartheta^{\prime}(s) \sin \vartheta(s), 0\right)=\frac{a}{c} \vartheta^{\prime}(s)(\cos \vartheta(s),-\sin \vartheta(s), 0)
$$

We may assume without loss of generality that $\frac{a}{c} \vartheta^{\prime}(s)>0$ and take $\kappa(s)=\frac{a}{c} \vartheta^{\prime}(s)$ and $\boldsymbol{n}=(\cos \vartheta(s),-\sin \vartheta(s), 0)$. Then

$$
\boldsymbol{b}=\boldsymbol{t} \times \boldsymbol{n}=\left(\frac{b}{c} \sin \vartheta(s), \frac{b}{c} \cos \vartheta(s),-\frac{a}{c}\right),
$$

and

$$
\boldsymbol{b}^{\prime}=\left(\frac{b}{c} \vartheta^{\prime}(s) \cos \vartheta(s),-\frac{b}{c} \sin \vartheta(s), 0\right)=\frac{b}{c} \vartheta^{\prime}(s) \boldsymbol{n}
$$

Hence $\tau=\frac{b}{c} \vartheta^{\prime}(s)$ and $\kappa / \tau=\frac{a}{b}$ is constant. It follows from part (b) that $\boldsymbol{\alpha}$ is a generalized helix.
A much simpler way to solve the problem is to guess the vector \boldsymbol{v} such that $\boldsymbol{t} \cdot \boldsymbol{v}$ is constant. Indeed, one can see that z-coordinate of \boldsymbol{t} is equal to b / c, i.e. it is constant. Thus, \boldsymbol{t} makes a constant angle with vector $(0,0,1)$, i.e. with z-axis.
(b) We may assume that $\boldsymbol{\alpha}$ is parametrized by arc length. By definition, $\boldsymbol{\alpha}$ is a (generalized) helix if and only if there exists a constant vector \boldsymbol{v} such that

$$
\frac{\boldsymbol{t} \cdot \boldsymbol{v}}{\|\boldsymbol{t}\|\|\boldsymbol{v}\|}=\frac{\boldsymbol{t} \cdot \boldsymbol{v}}{\|\boldsymbol{v}\|}=\mathrm{const}
$$

We may assume that \boldsymbol{v} has unit length, so the equality above is equivalent to

$$
\boldsymbol{t} \cdot \boldsymbol{v}=\mathrm{const}
$$

Equivalently, $\boldsymbol{\alpha}$ is a (generalized) helix if and only if there exists a constant vector \boldsymbol{v} such that

$$
\boldsymbol{t}^{\prime} \cdot \boldsymbol{v}=0 \Longleftrightarrow \boldsymbol{n} \cdot \boldsymbol{v}=0 \Longleftrightarrow \boldsymbol{v}=c \boldsymbol{t}+d \boldsymbol{b}
$$

Since \boldsymbol{v} has unit length, we have $c^{2}+d^{2}=1$. Then \boldsymbol{v} makes a constant angle with \boldsymbol{t} if and only if $c=$ const The vector \boldsymbol{v} is a constant vector if and only if $(c \boldsymbol{t}+d \boldsymbol{b})^{\prime}=0$, that is if and only if

$$
c^{\prime} \boldsymbol{t}+c \boldsymbol{t}^{\prime}+d^{\prime} \boldsymbol{b}+d \boldsymbol{b}^{\prime}=c \kappa \boldsymbol{n}+d^{\prime} \boldsymbol{b}+d \tau \boldsymbol{n}=d^{\prime} \boldsymbol{b}+(c \kappa+d \tau) \boldsymbol{n}=0,
$$

which holds if and only if

$$
d^{\prime}=c \kappa+d \tau=0
$$

if and only if $\kappa / \tau=-d / c=$ const
5.2. Let $\boldsymbol{\alpha}, \boldsymbol{\beta}$ be regular curves in \mathbb{R}^{3} such that, for each u, the principal normals $\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$ and $\boldsymbol{n}_{\boldsymbol{\beta}}(u)$ are parallel. Prove that the angle between $\boldsymbol{t}_{\boldsymbol{\alpha}}(u)$ and $\boldsymbol{t}_{\boldsymbol{\beta}}(u)$ is independent of u. Prove also that if the line through $\boldsymbol{\alpha}(u)$ in direction $\boldsymbol{n}_{\boldsymbol{\alpha}(u)}$ coincides with the line through $\boldsymbol{\beta}(u)$ in direction $\boldsymbol{n}_{\boldsymbol{\beta}(u)}$ then

$$
\boldsymbol{\beta}(u)=\boldsymbol{\alpha}(u)+r \boldsymbol{n}_{\boldsymbol{\alpha}}(u)
$$

for some real number r.

Solution:
We may assume that one of the curves (say, $\boldsymbol{\alpha}$) is parametrized by arc length. Let

$$
f(u)=\boldsymbol{t}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)
$$

We want to show that $f^{\prime}(u) \equiv 0$.

$$
\begin{aligned}
& f^{\prime}(u)=\boldsymbol{t}_{\boldsymbol{\alpha}}^{\prime}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)+\boldsymbol{t}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}^{\prime}(u)=\kappa_{\boldsymbol{\alpha}}(u) \boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)+\boldsymbol{t}_{\boldsymbol{\alpha}}(u) \cdot\left\|\boldsymbol{\beta}^{\prime}(u)\right\| \kappa_{\boldsymbol{\beta}}(u) \boldsymbol{n}_{\boldsymbol{\beta}}(u)= \\
&=\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot\left(\kappa_{\boldsymbol{\alpha}}(u) \boldsymbol{t}_{\boldsymbol{\beta}}(u)+\lambda(u)\left\|\boldsymbol{\beta}^{\prime}(u)\right\| \kappa_{\boldsymbol{\beta}} \boldsymbol{t}_{\boldsymbol{\alpha}}(u)\right)
\end{aligned}
$$

for the function $\lambda(u)$ defined by $\boldsymbol{n}_{\boldsymbol{\beta}}(u)=\lambda(u) \boldsymbol{n}_{\boldsymbol{\alpha}}$. Now, $\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\alpha}}(u)=0$, and

$$
\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)=\lambda^{-1}(u) \boldsymbol{n}_{\boldsymbol{\beta}}(u) \cdot \boldsymbol{t}_{\boldsymbol{\beta}}(u)=0
$$

so $f^{\prime}(u) \equiv 0$.
Now assume the lines $\left\{\boldsymbol{\alpha}(u)+\mu_{1} \boldsymbol{n}_{\boldsymbol{\alpha}}(u) \mid \mu_{1} \in \mathbb{R}\right\}$ and $\left\{\boldsymbol{\beta}(u)+\mu_{2} \boldsymbol{n}_{\boldsymbol{\beta}}(u) \mid \mu_{2} \in \mathbb{R}\right\}$ coincide, i.e.

$$
\boldsymbol{\alpha}(u)-\boldsymbol{\beta}(u)=\mu(u) \boldsymbol{n}_{\boldsymbol{\alpha}}(u)
$$

for some $\mu(u) \in \mathbb{R}$. We want to show that $\mu(u)$ is constant. We can write

$$
\mu(u)=\boldsymbol{n}_{\boldsymbol{\alpha}}(u) \cdot(\boldsymbol{\alpha}(u)-\boldsymbol{\beta}(u))
$$

therefore

$$
\mu^{\prime}(u)=\boldsymbol{n}_{\boldsymbol{\alpha}}^{\prime}(u) \cdot(\boldsymbol{\alpha}(u)-\boldsymbol{\beta}(u))+n_{\boldsymbol{\alpha}}(u) \cdot\left(\boldsymbol{t}_{\boldsymbol{\alpha}}(u)-\boldsymbol{t}_{\boldsymbol{\beta}}(u)\right)
$$

The first summand vanishes since $\boldsymbol{\alpha}(u)-\boldsymbol{\beta}(u)=\mu(u) n_{\boldsymbol{\alpha}}(u)$ is parallel to $n_{\boldsymbol{\alpha}}(u)$, and $\boldsymbol{n}_{\boldsymbol{\alpha}}^{\prime}(u) \cdot \boldsymbol{n}_{\boldsymbol{\alpha}}(u)=0$. The second summand vanishes since $\boldsymbol{n}_{\boldsymbol{\alpha}}(u)$ is parallel to $\boldsymbol{n}_{\boldsymbol{\beta}}(u)$.
5.3. (\star) Let $\boldsymbol{\alpha}$ be the curve in \mathbb{R}^{3} given by

$$
\boldsymbol{\alpha}(u)=e^{u}(\cos u, \sin u, 1), \quad u \in \mathbb{R}
$$

If $0<\lambda_{0}<\lambda_{1}$, find the length of the segment of $\boldsymbol{\alpha}$ which lies between the planes $z=\lambda_{0}$ and $z=\lambda_{1}$. Show also that the curvature and torsion of $\boldsymbol{\alpha}$ are both inversely proportional to e^{u}.

Solution:

We have

$$
\begin{gathered}
\boldsymbol{\alpha}^{\prime}(u)=e^{u}(\cos u, \sin u, 1)+e^{u}(-\sin u, \cos u, 0)=\left(e^{u} \cos u-e^{u} \sin u, e^{u} \sin u+e^{u} \cos u, e^{u}\right), \\
\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|=e^{u} \sqrt{(\cos u-\sin u)^{2}+(\sin u+\cos u)^{2}+1}=e^{u} \sqrt{3} .
\end{gathered}
$$

We first need to find the parameter values when $\boldsymbol{\alpha}$ intersects the planes $z=\lambda_{0}$ and $z=\lambda_{1}$. The z-component of $\boldsymbol{\alpha}(u)$ is e^{u}, so $e^{u}=\lambda$ implies $u=\ln \lambda$. Then the arc length ℓ between where the curve intersects the planes $z=\lambda_{0}$ and $z=\lambda_{1}$ with $0<\lambda_{0}<\lambda_{1}$ is given by integrating $\left\|\boldsymbol{\alpha}^{\prime}(u)\right\|$ between the corresponding parameter values, namely $u_{0}=\ln \lambda_{0}$ and $u_{1}=\ln \lambda_{1}$. So

$$
\ell=\int_{u_{0}}^{u_{1}}\left\|\boldsymbol{\alpha}^{\prime}(u)\right\| \mathrm{d} u=\int_{u_{0}}^{u_{1}} \sqrt{3} e^{u} \mathrm{~d} u=\sqrt{3}\left[e^{u}\right]_{u_{0}}^{u_{1}}=\sqrt{3}\left(e^{u_{1}}-e^{u_{0}}\right)=\sqrt{3}\left(\lambda_{1}-\lambda_{0}\right)
$$

To compute the curvature we use the formula

$$
\kappa=\frac{\left\|\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right\|}{\left\|\boldsymbol{\alpha}^{\prime}\right\|^{3}}
$$

As a result, we obtain

$$
\kappa(u)=\frac{\sqrt{2}}{3} \cdot e^{-u}
$$

which has the desired form

$$
\text { const } \cdot \frac{1}{e^{u}}
$$

Now one can note that $\boldsymbol{\alpha}$ is a generalized helix: indeed, the cosine of the angle formed by $\boldsymbol{\alpha}^{\prime}(u)$ with vector $(0,0,1)$ is

$$
\frac{\left(e^{u} \cos u-e^{u} \sin u, e^{u} \sin u+e^{u} \cos u, e^{u}\right) \cdot(0,0,1)}{\sqrt{3} e^{u}}=\frac{1}{\sqrt{3}}
$$

which is constant. Thus, by Exercise 5.1, the torsion is also proportional to $1 / e^{u}$.
Alternatively, one can compute the torsion explicitly to see that

$$
\tau(u)=-\frac{1}{3} \cdot e^{-u}
$$

which is also of required form.
5.4. Let $\boldsymbol{\alpha}$ be a curve parametrized by arc length with nowhere vanishing curvature κ and torsion τ. Show that if the trace of $\boldsymbol{\alpha}$ lies on a sphere then

$$
\frac{\tau}{\kappa}=\left(\frac{\kappa^{\prime}}{\tau \kappa^{2}}\right)^{\prime}
$$

Is the converse true?

Solution: Suppose that $\boldsymbol{\alpha}$ lies on the sphere with centre \boldsymbol{c} and radius r. Then

$$
\begin{equation*}
(\boldsymbol{\alpha}-\boldsymbol{c}) \cdot(\boldsymbol{\alpha}-\boldsymbol{c})=r^{2} \tag{*}
\end{equation*}
$$

Differentiating $(*)$ once we get

$$
\boldsymbol{t} \cdot(\boldsymbol{\alpha}-\boldsymbol{c})=0
$$

This means that there exist $x, y \in \mathbb{R}$ such that

$$
\boldsymbol{\alpha}-\boldsymbol{c}=x \boldsymbol{n}+y \boldsymbol{b} .
$$

Differentiating the equality above we obtain

$$
\boldsymbol{t}=x^{\prime} \boldsymbol{n}+x \boldsymbol{n}^{\prime}+y^{\prime} \boldsymbol{b}+y \boldsymbol{b}^{\prime}=x^{\prime} \boldsymbol{n}+x(-\kappa \boldsymbol{t}-\tau \boldsymbol{b})+y^{\prime} \boldsymbol{b}+y \tau \boldsymbol{n}=-x \kappa \boldsymbol{t}+\left(x^{\prime}+y \tau\right) \boldsymbol{n}+\left(-x \tau+y^{\prime}\right) \boldsymbol{b}
$$

In particular, this implies that

$$
-x \tau+y^{\prime}=0
$$

Let us find x and y. Differentiating $(*)$ twice we get

$$
\begin{equation*}
\kappa \boldsymbol{n} \cdot(\boldsymbol{\alpha}-\boldsymbol{c})+1=0 \tag{**}
\end{equation*}
$$

Thus,

$$
\kappa x+1=0 \Longleftrightarrow x=-\frac{1}{\kappa}
$$

Differentiating (**) we get

$$
\kappa^{\prime} \boldsymbol{n} \cdot(\boldsymbol{\alpha}-\boldsymbol{c})+\kappa(-\kappa \boldsymbol{t}-\tau \boldsymbol{b}) \cdot(\boldsymbol{\alpha}-\boldsymbol{c})+\kappa \boldsymbol{n} \cdot \boldsymbol{t}=0
$$

Since $\boldsymbol{n} \cdot \boldsymbol{t}=0$, this implies

$$
\kappa^{\prime} \boldsymbol{n} \cdot\left(-\frac{1}{\kappa} \boldsymbol{n}+y \boldsymbol{b}\right)+\kappa(-\kappa \boldsymbol{t}-\tau \boldsymbol{b}) \cdot\left(-\frac{1}{\kappa} \boldsymbol{n}+y \boldsymbol{b}\right)=0,
$$

which gives

$$
-\frac{\kappa^{\prime}}{\kappa}-\kappa \tau y=0
$$

Hence,

$$
y=-\frac{\kappa^{\prime}}{\kappa^{2} \tau}
$$

Now the equality $-x \tau+y^{\prime}=0$ obtained above becomes

$$
\frac{\tau}{\kappa}=\left(\frac{\kappa^{\prime}}{\tau \kappa^{2}}\right)^{\prime}
$$

The converse is also true (see e.g. the solution of Exercise 5.5.(b))
5.5. Let $\boldsymbol{\alpha}$ be a regular curve parametrized by arc length with $\kappa>0$ and $\tau \neq 0$. Denote by \boldsymbol{n} and \boldsymbol{b} the principal normal and the binormal of $\boldsymbol{\alpha}$.
(a) If $\boldsymbol{\alpha}$ lies on a sphere with center $\boldsymbol{c} \in \mathbb{R}^{3}$ and radius $r>0$, show that

$$
\boldsymbol{\alpha}-\boldsymbol{c}=-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b}
$$

where $\rho=1 / \kappa$ and $\sigma=-1 / \tau$. Deduce that $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$.
(b) Conversely, if $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ has constant value r^{2} and $\rho^{\prime} \neq 0$, show that $\boldsymbol{\alpha}$ lies on a sphere of radius r.

Hint: Show that the curve $\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}$ is constant.

Solution:

(a) Suppose that $\boldsymbol{\alpha}$ lies on the sphere with center \boldsymbol{c} and radius r. From the solution of Exercise 5.4 we know that

$$
\boldsymbol{\alpha}-\boldsymbol{c}=x \boldsymbol{n}+y \boldsymbol{b},
$$

where

$$
x=-\frac{1}{\kappa}, \quad y=-\frac{\kappa^{\prime}}{\kappa^{2} \tau}
$$

We have thus

$$
\boldsymbol{\alpha}-\boldsymbol{c}=-\frac{1}{\kappa} \boldsymbol{n}-\frac{\kappa^{\prime}}{\kappa^{2} \tau} \boldsymbol{b}=-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b},
$$

where $\rho=1 / \kappa$ and $\sigma=-1 / \tau$. Now,

$$
r^{2}=(\boldsymbol{\alpha}-\boldsymbol{c}) \cdot(\boldsymbol{\alpha}-\boldsymbol{c})=\left(-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b}\right) \cdot\left(-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b}\right)=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2} .
$$

(b) Suppose that $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=r^{2}$. Differentiating we get

$$
\rho^{\prime}\left(\rho+\left(\rho^{\prime} \sigma\right)^{\prime} \sigma\right)=0
$$

As $\rho^{\prime} \neq 0$, it follows that

$$
\rho+\left(\rho^{\prime} \sigma\right)^{\prime} \sigma=0
$$

or equivalently,

$$
-\rho \tau+\left(\rho^{\prime} \sigma\right)^{\prime}=0
$$

The curve $\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}$ is constant (i.e, is a point) if and only if $\left(\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}\right)^{\prime}=0$. We have,

$$
\begin{aligned}
\left(\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}\right)^{\prime} & =\boldsymbol{t}+\rho^{\prime} \boldsymbol{n}+\rho \boldsymbol{n}^{\prime}+\left(\rho^{\prime} \sigma\right)^{\prime} \boldsymbol{b}+\left(\rho^{\prime} \sigma\right) \boldsymbol{b}^{\prime} \\
& =\boldsymbol{t}+\rho^{\prime} \boldsymbol{n}+\rho(-\kappa \boldsymbol{t}-\tau \boldsymbol{b})+\left(\rho^{\prime} \sigma\right)^{\prime} \boldsymbol{b}+\left(\rho^{\prime} \sigma\right) \tau \boldsymbol{n} \\
& =(1-\rho \kappa) \boldsymbol{t}+\left(\rho^{\prime}+\rho^{\prime} \sigma \tau\right) \boldsymbol{n}+\left(-\tau \rho+\left(\rho^{\prime} \sigma\right)^{\prime}\right) \boldsymbol{b} \\
& =0 \boldsymbol{t}+0 \boldsymbol{n}+0 \boldsymbol{b} \\
& =0 .
\end{aligned}
$$

We conclude that $\boldsymbol{\alpha}+\rho \boldsymbol{n}+\rho^{\prime} \sigma \boldsymbol{b}=\boldsymbol{c}$, for some point \boldsymbol{c}. Then

$$
\boldsymbol{\alpha}-\boldsymbol{c}=-\rho \boldsymbol{n}-\rho^{\prime} \sigma \boldsymbol{b}
$$

and as $\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ has constant value $r^{2},(\boldsymbol{\alpha}-\boldsymbol{c}) \cdot(\boldsymbol{\alpha}-\boldsymbol{c})=r^{2}$. This means that the curve $\boldsymbol{\alpha}$ lies on the sphere with center \boldsymbol{c} and radius r.

