Differential Geometry III, Solutions 7 (Week 7)

Surfaces - 2

7.1. (\star) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a curve $\boldsymbol{\alpha}(v) \subset S$ and a curve $\boldsymbol{w}(v)$ such that $\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)$ will be a parametrization of $S)$.
(b) Now let S be an arbitrary ruled surface, and let $\boldsymbol{x}: J \times I \rightarrow \mathbb{R}^{3}, \boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)$ be a parametrization of S such that $|\boldsymbol{w}(v)|=1$ for all $v \in I$, where $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ is a regular space curve and I, J are intervals in \mathbb{R}. A curve $\boldsymbol{\beta}: I \rightarrow \mathbb{R}^{3}$ lying in S is called a curve of striction if $\boldsymbol{\beta}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)=0$ for all $v \in I$. Find the curve of striction of the ruled surface in (a) with $a=b=1$ (using either one of the rulings).

Solution:

(a) Take as $\boldsymbol{\alpha}$ the intersection of the paraboloid with the plane $y=0$:

$$
\boldsymbol{\alpha}(v)=\left(v, 0, v^{2} / a^{2}\right)
$$

From Exercise 6.4 we know that every point $(x, y, z) \in S$ is contained in a line in the direction $\left(1, b / a, 2 x / a^{2}-\right.$ $2 y / a b)$, and the line itself is entirely contained in S. Taking $\boldsymbol{\alpha}(v)$ as $(x, y, z) \in S$, we see that the line through $\boldsymbol{\alpha}(v)$ has a direction vector $\boldsymbol{w}(v)=\left(1, b / a, 2 v / a^{2}\right)$. Thus, S can be parametrized as

$$
\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)=\left(v, 0, v^{2} / a^{2}\right)+u\left(1, b / a, 2 v / a^{2}\right)=\left(v+u, u b / a,\left(v^{2}+2 u v\right) / a^{2}\right)
$$

(b) If $a=b=1$, we have a parametrization of the paraboloid

$$
\boldsymbol{x}(u, v)=\left(v, 0, v^{2}\right)+u(1,1,2 v)
$$

Normalizing the direction vector computed in (a), we can write this as

$$
\boldsymbol{x}(u, v)=\left(v, 0, v^{2}\right)+u \frac{(1,1,2 v)}{\sqrt{2+4 v^{2}}}=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)
$$

so the new (unit) direction vector $\boldsymbol{w}(v)=(1,1,2 v) / \sqrt{2+4 v^{2}}$.
Now we write

$$
\boldsymbol{\beta}(v)=\boldsymbol{\alpha}(v)+u(v) \boldsymbol{w}(v)
$$

so

$$
\boldsymbol{\beta}^{\prime}(v)=\boldsymbol{\alpha}^{\prime}(v)+u^{\prime}(v) \boldsymbol{w}(v)+u(v) \boldsymbol{w}^{\prime}(v)
$$

The assumption $\boldsymbol{\beta}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)=0$ implies
$0=\boldsymbol{\beta}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)=\left(\boldsymbol{\alpha}^{\prime}(v)+u^{\prime}(v) \boldsymbol{w}(v)+u(v) \boldsymbol{w}^{\prime}(v)\right) \cdot \boldsymbol{w}^{\prime}(v)=\boldsymbol{\alpha}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)+u^{\prime}(v) \underbrace{\boldsymbol{w}(v) \cdot \boldsymbol{w}^{\prime}(v)}_{=0}+u(v) \boldsymbol{w}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)$, so we have

$$
u(v)=-\frac{\boldsymbol{\alpha}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)}{\left\|\boldsymbol{w}^{\prime}(v)\right\|^{2}}
$$

Let us compute $\boldsymbol{w}^{\prime}(v)$, and then the numerator and the denominator of the expression above.

$$
\boldsymbol{w}^{\prime}(v)=\left(\frac{(1,1,2 v)}{\sqrt{2+4 v^{2}}}\right)^{\prime}=\frac{-4 v}{\left(2+4 v^{2}\right)^{3 / 2}}(1,1,2 v)+\frac{(0,0,2)}{\sqrt{2+4 v^{2}}}=-\frac{4}{\left(2+4 v^{2}\right)^{3 / 2}}(v, v,-1)
$$

$$
\left\|\boldsymbol{w}^{\prime}(v)\right\|^{2}=\frac{8}{\left(2+4 v^{2}\right)^{2}}
$$

Since $\boldsymbol{\alpha}^{\prime}(v)=(1,0,2 v)$, we have

$$
\boldsymbol{\alpha}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)=-(1,0,2 v) \cdot \frac{4}{\left(2+4 v^{2}\right)^{3 / 2}}(v, v,-1)=\frac{4 v}{\left(2+4 v^{2}\right)^{3 / 2}}
$$

and

$$
u(v)=-\frac{\boldsymbol{\alpha}^{\prime}(v) \cdot \boldsymbol{w}^{\prime}(v)}{\left\|\boldsymbol{w}^{\prime}(v)\right\|^{2}}=-\frac{4 v}{\left(2+4 v^{2}\right)^{3 / 2}} / \frac{8}{\left(2+4 v^{2}\right)^{2}}=-\frac{v}{2}\left(2+4 v^{2}\right)^{1 / 2}
$$

which implies

$$
\boldsymbol{\beta}(v)=\boldsymbol{\alpha}(v)+u(v) \boldsymbol{w}(v)=\left(v, 0, v^{2}\right)-\frac{v}{2} \sqrt{2+4 v^{2}} \frac{(1,1,2 v)}{\sqrt{2+4 v^{2}}}=\left(v, 0, v^{2}\right)-\frac{v}{2}(1,1,2 v)=\frac{v}{2}(1,-1,0)
$$

One can note that $\boldsymbol{\beta}(v)$ is one of the lines from the second family of lines forming S.
7.2. (a) Show that the set S of $(x, y, z) \in \mathbb{R}^{3}$ fulfilling the equation $x z+y^{2}=1$ is a surface.
(b) Let $\boldsymbol{\alpha}, \boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be given by

$$
\boldsymbol{\alpha}(v)=(\cos v, \sin v, \cos v) \quad \text { and } \quad \boldsymbol{w}(v)=(1+\sin v,-\cos v,-1+\sin v)
$$

Show that for all $v \in \mathbb{R}$ there are two straight lines through $\boldsymbol{\alpha}(v)$, one of which is in direction $\boldsymbol{w}(v)$, both of which lie on S. If $\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v), u \in \mathbb{R}, 0<v<2 \pi$, show that \boldsymbol{x} is a local parametrization of S.

Solution:

(a) Computing the gradient of a smooth function $f(x, y, z)=x z+y^{2}$ we see that

$$
\nabla f(x, y, z)=(z, 2 y, x)
$$

is equal to zero if and only $(x, y, z)=(0,0,0)$, which implies that 1 is a regular value of f, so S is a regular surface.
(b) This can be solved similar to Exercise 6.4. We want to find a line in S through every point $\boldsymbol{\alpha}(v)$, i.e. a vector $\boldsymbol{w}(v)=(a(v), b(v), c(v))$ such that the line $\boldsymbol{\beta}_{v}(u)=\boldsymbol{\alpha}(v)+u \boldsymbol{w}(v)$ lies in S. Then

$$
\boldsymbol{\beta}_{v}(u)=(u a+\cos v, u b+\sin v, u c+\cos v)
$$

and $\boldsymbol{\beta}_{v}(u) \in S$ for every $u \in \mathbb{R}$ if and only if

$$
(u a+\cos v)(u c+\cos v)+(u b+\sin v)^{2}=1
$$

which is equivalent to

$$
u^{2}\left(a c+b^{2}\right)+u((a+c) \cos v+2 b \sin v)+1=1
$$

for every $u \in \mathbb{R}$, which implies

$$
a(v) c(v)+b^{2}(v)=(a(v)+c(v)) \cos v+2 b(v) \sin v=0
$$

The equality $(a(v)+c(v)) \cos v+2 b(v) \sin v=0$ implies, up to scaling, that $a(v)+c(v)=2 \sin v$ and $b(v)=-\cos v$. Together with $a(v) c(v)+b^{2}(v)=0$ this leads to

$$
\boldsymbol{w}(v)=(a(v), b(v), c(v))=(\pm 1+\sin v,-\cos v, \mp 1+\sin v)
$$

As in Exercise 6.4, there is an easier way to proceed. Changing coordinates (orthogonally) by $x=\left(x^{\prime}-z^{\prime}\right) / 2$ and $z=\left(x^{\prime}+z^{\prime}\right) / 2$ we get an equation of a one-sheeted hyperboloid, for which we know that it is doubly ruled.
7.3. Determine all surfaces of revolution which are also ruled surfaces.

Solution:

Let S be such a surface. Since S is a surface of revolution, it contains a circle $\{r(\cos u, \sin u, 0)\}$. Since S is a ruled surface, it contains a line through $\boldsymbol{p}=(r, 0,0) \in S$ in the direction $\boldsymbol{w}=(a, b, c)$ (we assume that S contains the entire line, otherwise we just get a piece of this surface). Then the whole S is obtained by rotation of the line around z-axis. Therefore, the surface is completely defined by $r>0$ and a direction (a, b, c). The parameter r does not change the type of S and is responsible for "scaling" only. Let us look how does S depend on (a, b, c).
If the vector (a, b, c) lies in $x y$-plane (i.e., $c=0$), then S is not a surface of revolution (since there is no regular curve $\boldsymbol{\alpha}(v)$ in $x z$-plane). Thus, $c \neq 0$, and we may assume without loss of generality that $\boldsymbol{w}=(a, b, 1)$.
If $a=b=0$, we get a cylinder

$$
x^{2}+y^{2}=r^{2}
$$

If $a \neq 0, b=0$, then the line meets z-axis at the point $(0,0,-r / a)$. Rotating this line around z-axis, we obtain a cone with equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}-\left(z+\frac{r}{a}\right)^{2}=0
$$

(check this!)
If $b \neq 0$, then the line does not meet z-axis, and one can easily see that we get a one-sheeted hyperboloid (shifted along z-axis). Since the hyperbolid is obtained by rotation around z-axis, it should have an equation

$$
\frac{x^{2}}{c^{2}}+\frac{y^{2}}{c^{2}}-(z-d)^{2}=k^{2}
$$

for some real numbers c, d and k (check this!). Now, proceeding as in Exercise 7.2(b), we compute an equation to be

$$
\frac{x^{2}}{a^{2}+b^{2}}+\frac{y^{2}}{a^{2}+b^{2}}-\left(z+\frac{r a}{a^{2}+b^{2}}\right)^{2}=\frac{r^{2} b^{2}}{\left(a^{2}+b^{2}\right)^{2}}
$$

One can easily check that the line through $(r, 0,0)$ in the direction $(a, b, 1)$ is contained in S, and thus every rotation of it as well (since the equation is invariant with respect to rotation around z-axis, i.e. with respect to substitution (x, y, z) by $(x \cos u, y \sin u, z))$.
7.4. (\star Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be given by $f(x, y, z)=(x+y+z-1)^{2}$.
(a) Find the points at which $\operatorname{grad} f=0$.
(b) For which values of c the level set $S:=\left\{p=(x, y, z) \in \mathbb{R}^{3} \mid f(p)=c\right\}$ is a surface?
(c) What is the level set $f(p)=c$?
(d) Repeat (a) and (b) using the function $f(x, y, z)=x y z^{2}$.

Solution:

(a) $\nabla f(x, y, z)=2(x+y+z-1)(1,1,1)$, which implies that $\nabla f=0$ if and only if $x+y+z=1$.
(b) According to (a), $\nabla f=0$ if and only if $x+y+z-1=0$, which is equivalent to $f(x, y, z)=0$. Thus, the only singular value of f is 0 , and for any $c \neq 0$ the level set $f(p)=c$ is a regular surface.
However, although $c=0$ is a singular value of f, for $c=0$ the level set $f(p)=c$ is also a regular surface: $f(p)=0$ is a plane $x+y+z=1$ which is clearly regular.
(c) The equation $(x+y+z-1)^{2}=c$ is equivalent to $(x+y+z-1)= \pm \sqrt{c}$, so it is a union of two parallel planes for $c \neq 0$, and one plane for $c=0$.
(d) $\nabla f(x, y, z)=\left(y z^{2}, x z^{2}, 2 x y z\right)=z(y z, x z, 2 x y)$, which implies that $\nabla f=0$ if and only if $z=0$ or $x=y=0$, so the only singular value of f is 0 , and for any $c \neq 0$ the level set $f(p)=c$ is a regular surface. The level set $f(p)=0$ is a union of three coordinate planes, so it is not a regular surface (the "bad" points are ones lying on coordinate axes, check this!)

7.5. Möbius band

Let S be the image of the function $f: \mathbb{R} \times(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{3},(\varepsilon>0)$, defined by

$$
f(u, v)=\left(\left(2-v \sin \frac{u}{2}\right) \sin u,\left(2-v \sin \frac{u}{2}\right) \cos u, v \cos \frac{u}{2}\right) .
$$

Show that, for ε sufficiently small, S is a surface in \mathbb{R}^{3} which may be covered by two coordinate neighborhoods. Give a sketch of the surface indicating the curves $u=$ const and $v=$ const (such curves are called coordinate curves).

Solution:

(a) Let us write $f(u, v)$ as

$$
f(u, v)=\underbrace{(2 \sin u, 2 \cos u, 0)}_{=: \boldsymbol{\alpha}(u)}+v \underbrace{\left(-\sin \frac{u}{2} \sin u,-\sin \frac{u}{2} \cos u, \cos \frac{u}{2}\right)}_{=: \boldsymbol{w}(u)}
$$

By the form of f, S is a ruled surface, and one can easily see that $\boldsymbol{\alpha}(u)$ is regular, and $\boldsymbol{\alpha}^{\prime}(u)$ and $\boldsymbol{w}(u)$ are not collinear for all $u \in \mathbb{R}$. Now, to have a regular surface, we need the intervals through different points of $\boldsymbol{\alpha}(u)$ to be disjoint. A straightforward calculation shows that this holds for small ε (say, for $0<\varepsilon<2$).
In fact, the latter can be shown geometrically. One can note that the line $\boldsymbol{l}_{u}(v)=f(u, v)$ through $\boldsymbol{\alpha}(u)$ in the direction $\boldsymbol{w}(u)$ meets the z-axis at the point $(0,0, \cot u / 2)$ (unless $u=0$: in this case $\boldsymbol{l}_{u}(v)$ is parallel to z-axis). Therefore, if two such lines $\boldsymbol{l}_{u_{1}}(v)$ and $\boldsymbol{l}_{u_{2}}(v)$ intersect, they should be contained in a plane passing through the z-axis, and thus intersect the circle $\left\{x^{2}+y^{2}=4, z=0\right\}$ (which is the trace of $\boldsymbol{\alpha}$) in two opposite points only, which is clearly not the case (unless $u_{2}=u_{1}+n \pi$) since the lines meet $\boldsymbol{\alpha}$ at $\boldsymbol{\alpha}\left(u_{1}\right)$ and $\boldsymbol{\alpha}\left(u_{2}\right)$. The condition that the intervals lying on lines $\boldsymbol{l}_{u}(v)$ and $\boldsymbol{l}_{u+\pi}(v)$ do not intersect is guaranteed by the assumption $\varepsilon<2$.
(b) Clearly, f is not injective: $\boldsymbol{\alpha}$ has a period 2π, so $f\left(u_{0}+2 \pi, 0\right)=f\left(u_{0}, 0\right)$. However, if we take an open set $U_{1}=(0,2 \pi) \times(-\varepsilon, \varepsilon)$, then the restriction of f on U_{1} is injective, and the image of U_{1} is the whole Möbius strip except one interval $f(0 \times(-\varepsilon, \varepsilon))$. Taking $U_{2}=(-\pi, \pi) \times(-\varepsilon, \varepsilon)$, we see that $f\left(U_{1}\right) \cup f\left(U_{2}\right)=S$.

