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Differential Geometry III, Solutions 7 (Week 7)

Surfaces - 2

7.1. (?) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a
curve α(v) ⊂ S and a curve w(v) such that x(u, v) = α(v) +uw(v) will be a parametrization of S).

(b) Now let S be an arbitrary ruled surface, and let x : J × I → R3, x(u, v) = α(v) + uw(v) be
a parametrization of S such that |w(v)| = 1 for all v ∈ I, where α : I → R3 is a regular space
curve and I, J are intervals in R. A curve β : I → R3 lying in S is called a curve of striction if
β′(v) ·w′(v) = 0 for all v ∈ I. Find the curve of striction of the ruled surface in (a) with a = b = 1
(using either one of the rulings).

Solution:

(a) Take as α the intersection of the paraboloid with the plane y = 0:

α(v) = (v, 0, v2/a2)

From Exercise 6.4 we know that every point (x, y, z) ∈ S is contained in a line in the direction (1, b/a, 2x/a2−
2y/ab), and the line itself is entirely contained in S. Taking α(v) as (x, y, z) ∈ S, we see that the line through
α(v) has a direction vector w(v) = (1, b/a, 2v/a2). Thus, S can be parametrized as

x(u, v) = α(v) + uw(v) = (v, 0, v2/a2) + u(1, b/a, 2v/a2) = (v + u, ub/a, (v2 + 2uv)/a2)

(b) If a = b = 1, we have a parametrization of the paraboloid

x(u, v) = (v, 0, v2) + u(1, 1, 2v)

Normalizing the direction vector computed in (a), we can write this as

x(u, v) = (v, 0, v2) + u
(1, 1, 2v)√

2 + 4v2
= α(v) + uw(v),

so the new (unit) direction vector w(v) = (1, 1, 2v)/
√

2 + 4v2.

Now we write
β(v) = α(v) + u(v)w(v),

so
β′(v) = α′(v) + u′(v)w(v) + u(v)w′(v)

The assumption β′(v) ·w′(v) = 0 implies

0 = β′(v)·w′(v) = (α′(v)+u′(v)w(v)+u(v)w′(v))·w′(v) = α′(v)·w′(v)+u′(v)w(v) ·w′(v)︸ ︷︷ ︸
=0

+u(v)w′(v)·w′(v),

so we have

u(v) = −α
′(v) ·w′(v)

‖w′(v)‖2

Let us compute w′(v), and then the numerator and the denominator of the expression above.

w′(v) =

(
(1, 1, 2v)√

2 + 4v2

)′

=
−4v

(2 + 4v2)3/2
(1, 1, 2v) +

(0, 0, 2)√
2 + 4v2

= − 4

(2 + 4v2)3/2
(v, v,−1),



so

‖w′(v)‖2 =
8

(2 + 4v2)2

Since α′(v) = (1, 0, 2v), we have

α′(v) ·w′(v) = −(1, 0, 2v) · 4

(2 + 4v2)3/2
(v, v,−1) =

4v

(2 + 4v2)3/2
,

and

u(v) = −α
′(v) ·w′(v)

‖w′(v)‖2
= − 4v

(2 + 4v2)3/2

/
8

(2 + 4v2)2
= −v

2
(2 + 4v2)1/2,

which implies

β(v) = α(v) + u(v)w(v) = (v, 0, v2)− v

2

√
2 + 4v2

(1, 1, 2v)√
2 + 4v2

= (v, 0, v2)− v

2
(1, 1, 2v) =

v

2
(1,−1, 0)

One can note that β(v) is one of the lines from the second family of lines forming S.

7.2. (a) Show that the set S of (x, y, z) ∈ R3 fulfilling the equation xz + y2 = 1 is a surface.

(b) Let α,w : R→ R3 be given by

α(v) = (cos v, sin v, cos v) and w(v) = (1 + sin v,− cos v,−1 + sin v).

Show that for all v ∈ R there are two straight lines through α(v), one of which is in direction w(v),
both of which lie on S. If x(u, v) = α(v) + uw(v), u ∈ R, 0 < v < 2π, show that x is a local
parametrization of S.

Solution:

(a) Computing the gradient of a smooth function f(x, y, z) = xz + y2 we see that

∇f(x, y, z) = (z, 2y, x)

is equal to zero if and only (x, y, z) = (0, 0, 0), which implies that 1 is a regular value of f , so S is a regular
surface.

(b) This can be solved similar to Exercise 6.4. We want to find a line in S through every point α(v), i.e. a
vector w(v) = (a(v), b(v), c(v)) such that the line βv(u) = α(v) + uw(v) lies in S. Then

βv(u) = (ua+ cos v, ub+ sin v, uc+ cos v)

and βv(u) ∈ S for every u ∈ R if and only if

(ua+ cos v)(uc+ cos v) + (ub+ sin v)2 = 1,

which is equivalent to
u2(ac+ b2) + u((a+ c) cos v + 2b sin v) + 1 = 1

for every u ∈ R, which implies

a(v)c(v) + b2(v) = (a(v) + c(v)) cos v + 2b(v) sin v = 0

The equality (a(v) + c(v)) cos v + 2b(v) sin v = 0 implies, up to scaling, that a(v) + c(v) = 2 sin v and
b(v) = − cos v. Together with a(v)c(v) + b2(v) = 0 this leads to

w(v) = (a(v), b(v), c(v)) = (±1 + sin v,− cos v,∓1 + sin v)

As in Exercise 6.4, there is an easier way to proceed. Changing coordinates (orthogonally) by x = (x′− z′)/2
and z = (x′ + z′)/2 we get an equation of a one-sheeted hyperboloid, for which we know that it is doubly
ruled.



7.3. Determine all surfaces of revolution which are also ruled surfaces.

Solution:

Let S be such a surface. Since S is a surface of revolution, it contains a circle {r(cosu, sinu, 0)}. Since S
is a ruled surface, it contains a line through p = (r, 0, 0) ∈ S in the direction w = (a, b, c) (we assume that
S contains the entire line, otherwise we just get a piece of this surface). Then the whole S is obtained by
rotation of the line around z-axis. Therefore, the surface is completely defined by r > 0 and a direction
(a, b, c). The parameter r does not change the type of S and is responsible for “scaling” only. Let us look
how does S depend on (a, b, c).

If the vector (a, b, c) lies in xy-plane (i.e., c = 0), then S is not a surface of revolution (since there is no regular
curve α(v) in xz-plane). Thus, c 6= 0, and we may assume without loss of generality that w = (a, b, 1).

If a = b = 0, we get a cylinder
x2 + y2 = r2

If a 6= 0, b = 0, then the line meets z-axis at the point (0, 0,−r/a). Rotating this line around z-axis, we
obtain a cone with equation

x2

a2
+
y2

a2
−
(
z +

r

a

)2
= 0

(check this!)

If b 6= 0, then the line does not meet z-axis, and one can easily see that we get a one-sheeted hyperboloid
(shifted along z-axis). Since the hyperbolid is obtained by rotation around z-axis, it should have an equation

x2

c2
+
y2

c2
− (z − d)2 = k2

for some real numbers c, d and k (check this!). Now, proceeding as in Exercise 7.2(b), we compute an equation
to be

x2

a2 + b2
+

y2

a2 + b2
−
(
z +

ra

a2 + b2

)2

=
r2b2

(a2 + b2)2

One can easily check that the line through (r, 0, 0) in the direction (a, b, 1) is contained in S, and thus every
rotation of it as well (since the equation is invariant with respect to rotation around z-axis, i.e. with respect
to substitution (x, y, z) by (x cosu, y sinu, z)).

7.4. (?) Let f : R3 → R be given by f(x, y, z) = (x+ y + z − 1)2.

(a) Find the points at which grad f = 0.

(b) For which values of c the level set S := {p = (x, y, z) ∈ R3 | f(p) = c} is a surface?

(c) What is the level set f(p) = c?

(d) Repeat (a) and (b) using the function f(x, y, z) = xyz2.

Solution:

(a) ∇f(x, y, z) = 2(x+ y + z − 1)(1, 1, 1), which implies that ∇f = 0 if and only if x+ y + z = 1.

(b) According to (a), ∇f = 0 if and only if x+ y+ z− 1 = 0, which is equivalent to f(x, y, z) = 0. Thus, the
only singular value of f is 0, and for any c 6= 0 the level set f(p) = c is a regular surface.

However, although c = 0 is a singular value of f , for c = 0 the level set f(p) = c is also a regular surface:
f(p) = 0 is a plane x+ y + z = 1 which is clearly regular.

(c) The equation (x+ y + z − 1)2 = c is equivalent to (x+ y + z − 1) = ±
√
c, so it is a union of two parallel

planes for c 6= 0, and one plane for c = 0.

(d) ∇f(x, y, z) = (yz2, xz2, 2xyz) = z(yz, xz, 2xy), which implies that ∇f = 0 if and only if z = 0 or
x = y = 0, so the only singular value of f is 0, and for any c 6= 0 the level set f(p) = c is a regular surface.
The level set f(p) = 0 is a union of three coordinate planes, so it is not a regular surface (the “bad” points
are ones lying on coordinate axes, check this!)



7.5. Möbius band
Let S be the image of the function f : R× (−ε, ε)→ R3, (ε > 0), defined by

f(u, v) =
((

2− v sin
u

2

)
sinu,

(
2− v sin

u

2

)
cosu, v cos

u

2

)
.

Show that, for ε sufficiently small, S is a surface in R3 which may be covered by two coordinate
neighborhoods. Give a sketch of the surface indicating the curves u = const and v = const (such
curves are called coordinate curves).

Solution:

(a) Let us write f(u, v) as

f(u, v) = (2 sinu, 2 cosu, 0)︸ ︷︷ ︸
=:α(u)

+v
(
− sin

u

2
sinu, − sin

u

2
cosu, cos

u

2

)
︸ ︷︷ ︸

=:w(u)

By the form of f , S is a ruled surface, and one can easily see that α(u) is regular, and α′(u) and w(u) are
not collinear for all u ∈ R. Now, to have a regular surface, we need the intervals through different points of
α(u) to be disjoint. A straightforward calculation shows that this holds for small ε (say, for 0 < ε < 2).

In fact, the latter can be shown geometrically. One can note that the line lu(v) = f(u, v) through α(u) in
the direction w(u) meets the z-axis at the point (0, 0, cotu/2) (unless u = 0: in this case lu(v) is parallel to
z-axis). Therefore, if two such lines lu1

(v) and lu2
(v) intersect, they should be contained in a plane passing

through the z-axis, and thus intersect the circle {x2 + y2 = 4, z = 0} (which is the trace of α) in two
opposite points only, which is clearly not the case (unless u2 = u1 + nπ) since the lines meet α at α(u1) and
α(u2). The condition that the intervals lying on lines lu(v) and lu+π(v) do not intersect is guaranteed by the
assumption ε < 2.

(b) Clearly, f is not injective: α has a period 2π, so f(u0 + 2π, 0) = f(u0, 0). However, if we take an open set
U1 = (0, 2π) × (−ε, ε), then the restriction of f on U1 is injective, and the image of U1 is the whole Möbius
strip except one interval f(0× (−ε, ε)). Taking U2 = (−π, π)× (−ε, ε), we see that f(U1) ∪ f(U2) = S.


