Differential Geometry III, Homework 7 (Week 7)

Due date for starred problems: Thursday, December 8.

Surfaces - 2

- **7.1.** (*) (a) Parametrize the hyperbolic paraboloid S from Exercise 6.4 as a ruled surface (i.e., find a curve $\alpha(v) \subset S$ and a curve w(v) such that $x(u,v) = \alpha(v) + uw(v)$ will be a parametrization of S).
 - (b) Now let S be an arbitrary ruled surface, and let $\boldsymbol{x}: J \times I \to \mathbb{R}^3$, $\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(v) + u\boldsymbol{w}(v)$ be a parametrization of S such that $|\boldsymbol{w}(v)| = 1$ for all $v \in I$, where $\boldsymbol{\alpha}: I \to \mathbb{R}^3$ is a regular space curve and I, J are intervals in \mathbb{R} . A curve $\boldsymbol{\beta}: I \to \mathbb{R}^3$ lying in S is called a *curve of striction* if $\boldsymbol{\beta}'(v) \cdot \boldsymbol{w}'(v) = 0$ for all $v \in I$. Find the curve of striction of the ruled surface in (a) with a = b = 1 (using either one of the rulings).

Hint: You may assume $\beta(v) = \alpha(v) + u(v)w(v)$.

- **7.2.** (a) Show that the set S of $(x, y, z) \in \mathbb{R}^3$ fulfilling the equation $xz + y^2 = 1$ is a surface.
 - (b) Let $\alpha, w : \mathbb{R} \to \mathbb{R}^3$ be given by

$$\alpha(v) = (\cos v, \sin v, \cos v)$$
 and $w(v) = (1 + \sin v, -\cos v, -1 + \sin v)$.

Show that for all $v \in \mathbb{R}$ there are two straight lines through $\alpha(v)$, one of which is in direction w(v), both of which lie on S. If $x(u,v) = \alpha(v) + uw(v)$, $u \in \mathbb{R}$, $0 < v < 2\pi$, show that x is a local parametrization of S.

- **7.3.** Determine all surfaces of revolution which are also ruled surfaces.
- **7.4.** (*) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(x, y, z) = (x + y + z 1)^2$.
 - (a) Find the points at which grad f = 0.
 - (b) For which values of c the level set $S := \{p = (x, y, z) \in \mathbb{R}^3 \mid f(p) = c\}$ is a surface?
 - (c) What is the level set f(p) = c?
 - (d) Repeat (a) and (b) using the function $f(x, y, z) = xyz^2$.

7.5. Möbius band

Let S be the image of the function $f: \mathbb{R} \times (-\varepsilon, \varepsilon) \to \mathbb{R}^3, (\varepsilon > 0)$, defined by

$$f(u,v) = \left(\left(2 - v \sin \frac{u}{2} \right) \sin u, \ \left(2 - v \sin \frac{u}{2} \right) \cos u, \ v \cos \frac{u}{2} \right).$$

Show that, for ε sufficiently small, S is a surface in \mathbb{R}^3 which may be covered by two coordinate neighborhoods. Give a sketch of the surface indicating the curves u = const and v = const (such curves are called *coordinate curves*).

7.6. Real projective plane (bonus problem)

Let $f: \mathbb{R}^3 \to \mathbb{R}^5$ be defined by

$$f(x, y, z) = \left(yz, zx, xy, \frac{1}{2}(x^2 - y^2), \frac{1}{2\sqrt{3}}(x^2 + y^2 - 2z^2)\right).$$

Show that:

- (a) f(x, y, z) = f(x', y', z') if and only if $(x, y, z) = \pm (x', y', z')$;
- (b) the image $S = f(S^2(1))$ of the unit sphere $S^2(1)$ in \mathbb{R}^3 is a surface in \mathbb{R}^5 .

The surface S is often written as $\mathbb{R}P^2$ and is called the *real projective plane*. Note that it can be identified with the set of lines through the origin in \mathbb{R}^3 .