Differential Geometry III, Homework 9 (Week 9)

First fundamental form

9.1. Find the coefficients of the first fundamental forms of:
(a) the catenoid parametrized by

$$
\boldsymbol{x}(u, v)=(\cosh v \cos u, \cosh v \sin u, v), \quad(u, v) \in U:=(0,2 \pi) \times \mathbb{R}
$$

(b) the helicoid parametrized by

$$
\widetilde{\boldsymbol{x}}(u, v)=(-\sinh v \sin u, \sinh v \cos u,-u), \quad(u, v) \in U
$$

(c) the surface S_{ϑ} (for some $\vartheta \in \mathbb{R}$) parametrized by

$$
\boldsymbol{y}_{\vartheta}(u, v)=(\cos \vartheta) \boldsymbol{x}(u, v)+(\sin \vartheta) \widetilde{\boldsymbol{x}}(u, v), \quad(u, v) \in U
$$

9.2. Find the coefficients of the first fundamental form of $S^{2}(1)$ with respect to the local parametrization \boldsymbol{x} defined in Exercise 6.2.
9.3. Let $U=\mathbb{R} \times(0, \infty)$, and let $\boldsymbol{x}: U \rightarrow \mathbb{R}^{n}$ be a parametrization of a surface \mathbb{H} in \mathbb{R}^{2} with corresponding coefficients of the first fundamental form $E(u, v)=G(u, v)=1 / v^{2}$ and $F(u, v)=0$ for all $(u, v) \in U$. Then \mathbb{H} is called the hyperbolic plane. For $r>0$ denote by $\boldsymbol{\alpha}:(0, \pi) \rightarrow \mathbb{H}$ the curve given by

$$
\boldsymbol{\alpha}(t)=\boldsymbol{x}(r \cos t, r \sin t)
$$

Show that the length of $\boldsymbol{\alpha}$ in \mathbb{H} from $\boldsymbol{\alpha}(\pi / 6)$ to $\boldsymbol{\alpha}(5 \pi / 6)$ is equal to

$$
\int_{\pi / 6}^{5 \pi / 6} \frac{1}{\sin t} \mathrm{~d} t
$$

(In fact, $\boldsymbol{\alpha}$ is the curve of shortest length between its endpoints.) Now take $r=\sqrt{2}$ and find the angle of intersection of $\boldsymbol{\alpha}$ with the curve $\boldsymbol{\beta}(s)=\boldsymbol{x}(1, s)$ at their point of intersection.
9.4. Let S be a surface parametrized by

$$
\boldsymbol{x}(u, v)=(u \cos v, u \sin v, \log \cos v+u), \quad(u, v) \in U:=\mathbb{R} \times\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

For $c \in(-\pi / 2, \pi / 2)$, let $\boldsymbol{\alpha}_{c}$ be the curve given by $\boldsymbol{\alpha}_{c}(u)=\boldsymbol{x}(u, c)$. Show that the length of $\boldsymbol{\alpha}_{c}$ from $u=u_{0}$ to $u=u_{1}$ does not depend on c.

