Differential Geometry III, Homework 9 (Week 9)

First fundamental form

9.1. Find the coefficients of the first fundamental forms of:

(a) the *catenoid* parametrized by

$$\boldsymbol{x}(u,v) = (\cosh v \cos u, \cosh v \sin u, v), \qquad (u,v) \in U := (0,2\pi) \times \mathbb{R};$$

(b) the *helicoid* parametrized by

$$\widetilde{\boldsymbol{x}}(u,v) = (-\sinh v \sin u, \sinh v \cos u, -u), \qquad (u,v) \in U;$$

(c) the surface S_{ϑ} (for some $\vartheta \in \mathbb{R}$) parametrized by

$$\boldsymbol{y}_{\vartheta}(u,v) = (\cos\vartheta)\boldsymbol{x}(u,v) + (\sin\vartheta)\widetilde{\boldsymbol{x}}(u,v), \qquad (u,v) \in U.$$

- **9.2.** Find the coefficients of the first fundamental form of $S^2(1)$ with respect to the local parametrization \boldsymbol{x} defined in Exercise 6.2.
- **9.3.** Let $U = \mathbb{R} \times (0, \infty)$, and let $\boldsymbol{x} : U \to \mathbb{R}^n$ be a parametrization of a surface \mathbb{H} in \mathbb{R}^2 with corresponding coefficients of the first fundamental form $E(u, v) = G(u, v) = 1/v^2$ and F(u, v) = 0 for all $(u, v) \in U$. Then \mathbb{H} is called the *hyperbolic plane*. For r > 0 denote by $\boldsymbol{\alpha} : (0, \pi) \to \mathbb{H}$ the curve given by

$$\boldsymbol{\alpha}(t) = \boldsymbol{x}(r\cos t, r\sin t).$$

Show that the length of α in \mathbb{H} from $\alpha(\pi/6)$ to $\alpha(5\pi/6)$ is equal to

$$\int_{\pi/6}^{5\pi/6} \frac{1}{\sin t} \,\mathrm{d}t$$

(In fact, $\boldsymbol{\alpha}$ is the curve of shortest length between its endpoints.) Now take $r = \sqrt{2}$ and find the angle of intersection of $\boldsymbol{\alpha}$ with the curve $\boldsymbol{\beta}(s) = \boldsymbol{x}(1,s)$ at their point of intersection.

9.4. Let S be a surface parametrized by

$$\boldsymbol{x}(u,v) = (u\cos v, u\sin v, \log\cos v + u), \qquad (u,v) \in U := \mathbb{R} \times \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

For $c \in (-\pi/2, \pi/2)$, let α_c be the curve given by $\alpha_c(u) = \mathbf{x}(u, c)$. Show that the length of α_c from $u = u_0$ to $u = u_1$ does not depend on c.