Differential Geometry III, Term 1 (Section 4)

4 Space curves (curves in \mathbb{R}^{3})

4.1 The Serret - Frenet formulae

Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ be a smooth regular curve in \mathbb{R}^{3} parametrized by arc length (i.e., $\boldsymbol{t}=\boldsymbol{\alpha}^{\prime}$ is the unit tangent vector).

Definition 4.1. The curvature $\kappa: I \longrightarrow[0, \infty)$ of a space curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ is defined by

$$
\kappa(s):=\left\|\boldsymbol{t}^{\prime}(s)\right\|
$$

Remark. The curvature of a space curve is always non-negative $(\kappa(s) \geq 0)$. For plane curves, we introduced the signed curvature, which can have negative values. We will see the relation between both concepts later on.

Definition 4.2. Assume that $\kappa(s)>0$. We define the principal normal vector $\boldsymbol{n}(s)$ by

$$
\boldsymbol{n}(s):=\frac{1}{\kappa(s)} \boldsymbol{t}^{\prime}(s)
$$

Note that $\boldsymbol{n}(s)$ is really a unit vector (and also orthogonal to $\boldsymbol{t}(s)$. We have

$$
\boldsymbol{t}^{\prime}(s)=\kappa(s) \boldsymbol{n}(s)
$$

Remark. The vector product (or cross-product) $\times: \mathbb{R}^{3} \times \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ in \mathbb{R}^{3}. Recall some facts about the vector product in \mathbb{R}^{3}. Let $\boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{3}$.
(a) The vector product is defined by

$$
\boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \times\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right)
$$

(b) $\boldsymbol{a} \times \boldsymbol{b}$ is orthogonal to \boldsymbol{a} and \boldsymbol{b}, e.g., $(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{a}=0$.
(c) Antisymmetry: $\boldsymbol{a} \times \boldsymbol{b}=-\boldsymbol{b} \times \boldsymbol{a}$ (in particular, $\boldsymbol{a} \times \boldsymbol{a}=\mathbf{0}$).
(d) If \boldsymbol{a} and \boldsymbol{b} are orthogonal unit vectors, then $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{a} \times \boldsymbol{b})$ form an orthonormal basis, which is positively oriented. Moreover, one has

$$
b \times(a \times b)=a, \quad(a \times b) \times a=b
$$

Definition 4.3. The vector $\boldsymbol{b}:=\boldsymbol{t} \times \boldsymbol{n}$ is called the binormal vector of $\boldsymbol{\alpha}$, and ($\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b})$ form an orthonormal basis called also orthonormal frame.

Since \boldsymbol{b}^{\prime} is orthogonal to \boldsymbol{b} and to $\boldsymbol{t}, \boldsymbol{b}^{\prime}$ is parallel to \boldsymbol{n}. In particular, the following definition makes sense:

Definition 4.4. The torsion $\tau: I \longrightarrow \mathbb{R}$ of the space curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ is defined by

$$
\boldsymbol{b}^{\prime}(s)=\tau(s) \boldsymbol{n}(s) .
$$

Remark. Note that the torsion can have positive or negative values. Moreover, in some books, you will find the equation $\boldsymbol{b}^{\prime}=-\tau \boldsymbol{n}$ as a definition of the torsion.

Proposition 4.5 (Serret-Frenet equations). Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ be a space curve parametrized by arc length with unit tangent, normal and binormal vectors $\boldsymbol{t}, \boldsymbol{n}, \boldsymbol{b}$. Then

$$
\begin{align*}
\boldsymbol{t}^{\prime} & =\kappa \boldsymbol{n} \tag{4.2}\\
\boldsymbol{n}^{\prime} & =-\kappa \boldsymbol{t}-\tau \boldsymbol{b} \tag{4.6}\\
\boldsymbol{b}^{\prime} & =\tau \boldsymbol{n} \tag{4.5}
\end{align*}
$$

or in matrix form

$$
\left(\begin{array}{l}
\boldsymbol{t}^{\prime} \\
\boldsymbol{n}^{\prime} \\
\boldsymbol{b}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right)\left(\begin{array}{l}
\boldsymbol{t} \\
\boldsymbol{n} \\
\boldsymbol{b}
\end{array}\right)
$$

Let us now show how to calculate the torsion and curvature for a space curve which is not necessarily parametrized by arc length. This is of practical relevance, since a parametrization is in general not unit speed (i.e., the parameter is not arc length).
Theorem 4.6. Let $\alpha: I \longrightarrow \mathbb{R}^{3}$ be a regular space curve, not necessarily parametrized by arc length. Then the curvature and torsion of $\boldsymbol{\alpha}$ are given by

$$
\kappa=\frac{\left\|\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right\|}{\left\|\boldsymbol{\alpha}^{\prime}\right\|^{3}} \quad \text { and } \quad \tau=-\frac{\left(\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right) \cdot \boldsymbol{\alpha}^{\prime \prime \prime}}{\left\|\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime}\right\|^{2}}
$$

(as functions of u), respectively.
Example 4.7. The helix. Let $\boldsymbol{\alpha}: \mathbb{R} \longrightarrow \mathbb{R}^{3}$ be given by $\boldsymbol{\alpha}(u)=(a \cos u, a \sin u, u)$ for $a>0$ (this is a particular case of a helix, see Exercise 4.5). Then $\kappa=\frac{a}{a^{2}+1}, \tau(u)=-\frac{1}{a^{2}+1}$.

Remark (Geometric meaning of torsion). The plane through $\boldsymbol{\alpha}(s)$ spanned by $\boldsymbol{t}(s)$ and $\boldsymbol{n}(s)$ is called the osculating plane.

The torsion of a curve measures the rate at which the curve pulls away from the osculating plane.
Proposition 4.8 (Exercise). Let $\boldsymbol{\alpha}: I \rightarrow \mathbb{R}^{3}$ be a smooth curve, $\boldsymbol{\alpha}^{\prime} \times \boldsymbol{\alpha}^{\prime \prime} \neq \mathbf{0}$ for $u \in I$. Assume that there is a plane $\Pi \subset \mathbb{R}^{3}$ containing $\boldsymbol{\alpha}(I)$. Then $\tau(u) \equiv 0$.

We can now express one of the main results on space curve (similar to Theorem 3.8):
Theorem 4.9 (The fundamental theorem of local theory of space curves). Given smooth functions $\kappa: I \longrightarrow(0, \infty)$ and $\tau: I \longrightarrow \mathbb{R}$, there exists a smooth regular curve $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ parametrized by arc length such that κ and τ are the curvature and torsion of $\boldsymbol{\alpha}$. Moreover, $\boldsymbol{\alpha}$ is unique up to translations (of the starting point) and rotation (of the starting orthonormal basis).

Remark 4.10. Local canonical form of a space curve. Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ be a space curve parametrized by arc length with $0 \in I$. Then

$$
\begin{aligned}
\boldsymbol{\alpha}(s) & =\boldsymbol{\alpha}(0)+s \boldsymbol{\alpha}^{\prime}(0)+\frac{s^{2}}{2!} \boldsymbol{\alpha}^{\prime \prime}(0)+\frac{s^{3}}{3!} \boldsymbol{\alpha}^{\prime \prime \prime}(0)+O\left(s^{4}\right) \\
& =\boldsymbol{\alpha}(0)+s \boldsymbol{t}(0)+\frac{s^{2}}{2!} \underbrace{\boldsymbol{t}^{\prime}(0)}_{=\kappa(0) \boldsymbol{n}(0)}+\frac{s^{3}}{3!} \underbrace{\boldsymbol{t}^{\prime \prime}(0)}_{=\kappa^{\prime}(0) \boldsymbol{n}(0)+\kappa(0)(-\kappa(0) \boldsymbol{t}(0)-\tau(0) \boldsymbol{b}(0))}+O\left(s^{4}\right)
\end{aligned}
$$

by the Serret-Frenet formulae. In paricular,

$$
\boldsymbol{\alpha}(s)-\boldsymbol{\alpha}(0)=\left(s-\frac{\kappa(0)^{2} s^{3}}{6}\right) \boldsymbol{t}(0)+\left(\frac{\kappa(0) s^{2}}{2}+\frac{\kappa^{\prime}(0) s^{3}}{6}\right) \boldsymbol{n}(0)-\frac{\kappa(0) \tau(0) s^{3}}{6} \boldsymbol{b}(0)+O\left(s^{4}\right) .
$$

If we choose the coordinate system such that $\boldsymbol{t}(0)=(1,0,0), \boldsymbol{n}(0)=(0,1,0)$ and $\boldsymbol{b}(0)=(0,0,1)$, and if we write $\boldsymbol{\alpha}(s)-\boldsymbol{\alpha}(0)=(x(s), y(s), z(s))$, then

$$
\begin{aligned}
& x(s)=s-\frac{\kappa(0)^{2} s^{3}}{6} \\
& y(s)=\frac{\kappa(0) s^{2}}{2}+\frac{\kappa^{\prime}(0) s^{3}}{6} \\
& z(s)=-\frac{\kappa(0) \tau(0) s^{3}}{6} .
\end{aligned}
$$

These equations are called the local canonical form of a space curve $\boldsymbol{\alpha}$.

