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Differential Geometry III, Term 1 (Section 5)

5 A bit of Analysis (should have been a reminder)

We consider the Euclidean space

Rn =
{
x = (x1, . . . , xn)

∣∣xi ∈ R, i = 1, . . . , n
}

Definition 5.1.

(a) A ball of radius r > 0 with center a ∈ Rn in Rn is defined by

Br(a) :=
{
x ∈ Rn

∣∣ ‖x− a‖ =
√

(x1 − a1)2 + . . . + (xn − an)2 < r
}
.

(b) A subset U ⊂ Rn is called open, if for any y ∈ U there exists r > 0 such that Br(y) ⊂ U , i.e.

∀ y ∈ U ∃ r > 0 : Br(y) ⊂ U.

Example 5.2.

(a) Interval (a, b) ⊂ R is open.

(b) Closed interval [a, b] ⊂ R is not open.

(c) The ball Br(a) is an open subset of Rn for any a ∈ Rn and r > 0.

(d) The (open) cube (a1, b1)× . . .× (an, bn) is an open subset for any ai, bi ∈ R with ai < bi. Note that
for n = 1, a cube is an interval, and for n = 2, a cube is a rectangle (without the boundary).

(e) The entire space Rn and the empty set ∅ are open.

Now let U ⊂ Rn be open, f : U −→ Rm be a map, i.e.,

f(u) =

 f1(u1, . . . , un)
...

fm(u1, . . . , un)


for any u = (u1, . . . , un) ∈ U . We say that f is smooth if the (scalar) functions fi : U −→ R are smooth
for all i = 1, . . .m, i.e., if all partial derivatives of all order exist and are continuous.
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Example 5.3.

(a) f : R2 −→ R3 (U = R2, n = 2, m = 3) with

f(u1, u2) =

 u1
u2

u21 + u22


is a smooth map.

(b) f : B1(0) −→ R3 (U = B1(0) ⊂ R2, n = 2, m = 3) with

f(u1, u2) =

 u1
u2√

1− u21 − u22


is a smooth map as well.

For (scalar) functions, even of more than one variable, we know how to derive, e.g., if f(x, y) =
x2y + 3y3, then

∂f

∂x
(x, y) = 2xy and

∂f

∂y
(x, y) = x2 + 9y2.

Definition 5.4. Let U ⊂ Rn be open, let f : U −→ Rm be a smooth map and let p ∈ U . The Jacobi
matrix of f at p is the (m× n)-matrix given by

Jpf :=

∂1f1(p) . . . ∂nf1(p)
...

...
∂1fm(p) . . . ∂nfm(p)

 where ∂ifj(p) :=
∂

∂ui
fj(u)

∣∣∣∣
u=p

, i = 1, . . . , n.

The derivative of f at p is the linear map

dpf : Rn −→ Rm, h 7→ (dpf)(h) = Jpf · h

Note that the Jacobi matrix is just the matrix representation of the derivative in the standard basis.

Remark. Since dpf is linear, its image (range) (dpf)(Rn) is a vector subspace of Rm, spanned by

{(dpf)(e1), . . . , (dpf)(en)},

where {e1, . . . , en} is the standard basis in Rn. Observe that

(∂if(p) :=)(dpf)(ei) =

∂if1(p)
...

∂ifm(p)


which is just the ith column of the Jacobi matrix Jpf .

Example 5.5.

(a) f : R2 −→ R3

f(u, v) =

 u
v

u2 + v2

 then J(u,v)f =

 1 0
0 1

2u 2v

 .

At p = (0, 0), the image of dpf is spanned by (1, 0, 0) and (0, 1, 0).
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(b) f : R2 −→ R3,

f(u, v) =

 u
v2

uv

 then J(u,v)f =

1 0
0 2v
v u

 .

At p = (0, 0), the image of dpf is spanned by {(1, 0, 0), (0, 0, 0)}, i.e., by (1, 0, 0) (the x-axis).

(c) f : R3 −→ R,
f(x, y, z) := 2x2 + y2 − z2, J(x,y,z)f = (4x, 2y,−2z)

(the gradient of f). Note that the Jacobi matrix of a scalar function is just the gradient. Here, the
image of dpf is either R (if (x, y, z) 6= 0) or {0} (if (x, y, z) = 0).

Let us finally motivate the implicit function theorem

Example 5.6. Let f : R2 −→ R be given by f(u, v) = u2 + v2. We want to solve the equation

f(u, v) = c

near some point (a, b) ∈ R2 for c := f(a, b) ≥ 0, i.e., we look for a function g(u) = v such that f(u, g(u)) =
c. The implicit function tells us that if ∂vf(u0, v0) 6= 0 then this is possible. Here, ∂vf(a, b) = 2b, and a
simple calculation shows that

f(u, v) = c ⇐⇒ v =

{√
c− u2, if b > 0,

−
√
c− u2, if b < 0.

Theorem 5.7 (Implicit function theorem). Let W ⊂ Rp × Rm be open and f : W −→ Rm be smooth.
Let (a, b) ∈W (a ∈ Rp, b ∈ Rm) and c := f(a, b) ∈ Rm. Consider a function ϕ : W ∩Rm → Rm defined
by y 7→ f(a,y). Its Jacobi matrix is

J(a,y) =
∂f

∂y
(a,y) =


∂f1
∂y1

(a,y) . . .
∂f1
∂ym

(a,y)

...
...

∂fm
∂y1

(a,y) . . .
∂fm
∂ym

(a,y)


Assume that J(a,y) is invertible at y = b. Then there exist open sets U ⊂ Rp, a ∈ U , and V ⊂ Rm,
b ∈ V , and a smooth map g : U → V with g(a) = b such that

{(x,y) ∈ U × V |f(x,y) = c} = {(x, g(x)) |x ∈ U}

(i.e. the level set of points (x,y) with f(x,y) = c is locally a graph of some smooth function g : U → V ).

We will use this theorem in a particular case of m = 1: having a function

f : Rp+1 → R, (x1, . . . , xp, y) 7→ f(x, y), f(x0, y0) = c

with
∂f

∂y
(x0, y0) 6= 0, one has y = g(x) in a neighborhood of x0 for f(x, y) = c.
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