Differential Geometry III, Term 1 (Section 5)

5 A bit of Analysis (should have been a reminder)

We consider the Euclidean space

$$
\mathbb{R}^{n}=\left\{\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{R}, i=1, \ldots, n\right\}
$$

Definition 5.1.

(a) A ball of radius $r>0$ with center $\boldsymbol{a} \in \mathbb{R}^{n}$ in \mathbb{R}^{n} is defined by

$$
B_{r}(\boldsymbol{a}):=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\boldsymbol{a}\|=\sqrt{\left(x_{1}-a_{1}\right)^{2}+\ldots+\left(x_{n}-a_{n}\right)^{2}}<r\right\} .
$$

(b) A subset $U \subset \mathbb{R}^{n}$ is called open, if for any $\boldsymbol{y} \in U$ there exists $r>0$ such that $B_{r}(\boldsymbol{y}) \subset U$, i.e.

$$
\forall \boldsymbol{y} \in U \exists r>0: \quad B_{r}(\boldsymbol{y}) \subset U .
$$

Example 5.2.

(a) Interval $(a, b) \subset \mathbb{R}$ is open.
(b) Closed interval $[a, b] \subset \mathbb{R}$ is not open.
(c) The ball $B_{r}(\boldsymbol{a})$ is an open subset of \mathbb{R}^{n} for any $\boldsymbol{a} \in \mathbb{R}^{n}$ and $r>0$.
(d) The (open) cube $\left(a_{1}, b_{1}\right) \times \ldots \times\left(a_{n}, b_{n}\right)$ is an open subset for any $a_{i}, b_{i} \in \mathbb{R}$ with $a_{i}<b_{i}$. Note that for $n=1$, a cube is an interval, and for $n=2$, a cube is a rectangle (without the boundary).
(e) The entire space \mathbb{R}^{n} and the empty set \emptyset are open.

Now let $U \subset \mathbb{R}^{n}$ be open, $\boldsymbol{f}: U \longrightarrow \mathbb{R}^{m}$ be a map, i.e.,

$$
\boldsymbol{f}(\boldsymbol{u})=\left(\begin{array}{c}
f_{1}\left(u_{1}, \ldots, u_{n}\right) \\
\vdots \\
f_{m}\left(u_{1}, \ldots, u_{n}\right)
\end{array}\right)
$$

for any $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right) \in U$. We say that \boldsymbol{f} is smooth if the (scalar) functions $f_{i}: U \longrightarrow \mathbb{R}$ are smooth for all $i=1, \ldots m$, i.e., if all partial derivatives of all order exist and are continuous.

Example 5.3.

(a) $\boldsymbol{f}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}\left(U=\mathbb{R}^{2}, n=2, m=3\right)$ with

$$
\boldsymbol{f}\left(u_{1}, u_{2}\right)=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
u_{1}^{2}+u_{2}^{2}
\end{array}\right)
$$

is a smooth map.
(b) $\boldsymbol{f}: B_{1}(\mathbf{0}) \longrightarrow \mathbb{R}^{3}\left(U=B_{1}(\mathbf{0}) \subset \mathbb{R}^{2}, n=2, m=3\right)$ with

$$
\boldsymbol{f}\left(u_{1}, u_{2}\right)=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\sqrt{1-u_{1}^{2}-u_{2}^{2}}
\end{array}\right)
$$

is a smooth map as well.
For (scalar) functions, even of more than one variable, we know how to derive, e.g., if $f(x, y)=$ $x^{2} y+3 y^{3}$, then

$$
\frac{\partial f}{\partial x}(x, y)=2 x y \quad \text { and } \quad \frac{\partial f}{\partial y}(x, y)=x^{2}+9 y^{2}
$$

Definition 5.4. Let $U \subset \mathbb{R}^{n}$ be open, let $\boldsymbol{f}: U \longrightarrow \mathbb{R}^{m}$ be a smooth map and let $\boldsymbol{p} \in U$. The Jacobi matrix of \boldsymbol{f} at \boldsymbol{p} is the $(m \times n)$-matrix given by

$$
J_{\boldsymbol{p}} \boldsymbol{f}:=\left(\begin{array}{ccc}
\partial_{1} f_{1}(\boldsymbol{p}) & \ldots & \partial_{n} f_{1}(\boldsymbol{p}) \\
\vdots & & \vdots \\
\partial_{1} f_{m}(\boldsymbol{p}) & \ldots & \partial_{n} f_{m}(\boldsymbol{p})
\end{array}\right) \quad \text { where } \quad \partial_{i} f_{j}(\boldsymbol{p}):=\left.\frac{\partial}{\partial u_{i}} f_{j}(u)\right|_{u=p}, \quad i=1, \ldots, n .
$$

The derivative of \boldsymbol{f} at p is the linear map

$$
\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}, \quad h \mapsto\left(\mathrm{~d}_{\boldsymbol{p}} \boldsymbol{f}\right)(h)=J_{\boldsymbol{p}} \boldsymbol{f} \cdot h
$$

Note that the Jacobi matrix is just the matrix representation of the derivative in the standard basis.
Remark. Since $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}$ is linear, its image (range) $\left(\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}\right)\left(\mathbb{R}^{n}\right)$ is a vector subspace of \mathbb{R}^{m}, spanned by

$$
\left\{\left(\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}\right)\left(\boldsymbol{e}_{1}\right), \ldots,\left(\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}\right)\left(\boldsymbol{e}_{n}\right)\right\}
$$

where $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ is the standard basis in \mathbb{R}^{n}. Observe that

$$
\left(\partial_{i} \boldsymbol{f}(\boldsymbol{p}):=\right)\left(\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}\right)\left(\boldsymbol{e}_{i}\right)=\left(\begin{array}{c}
\partial_{i} f_{1}(\boldsymbol{p}) \\
\vdots \\
\partial_{i} f_{m}(\boldsymbol{p})
\end{array}\right)
$$

which is just the $i^{\text {th }}$ column of the Jacobi matrix $J_{p} f$.

Example 5.5.

(a) $\boldsymbol{f}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$

$$
\boldsymbol{f}(u, v)=\left(\begin{array}{c}
u \\
v \\
u^{2}+v^{2}
\end{array}\right) \quad \text { then } \quad J_{(u, v)} \boldsymbol{f}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
2 u & 2 v
\end{array}\right) .
$$

At $\boldsymbol{p}=(0,0)$, the image of $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}$ is spanned by $(1,0,0)$ and $(0,1,0)$.
(b) $\boldsymbol{f}: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$,

$$
\boldsymbol{f}(u, v)=\left(\begin{array}{c}
u \\
v^{2} \\
u v
\end{array}\right) \quad \text { then } \quad J_{(u, v)} \boldsymbol{f}=\left(\begin{array}{cc}
1 & 0 \\
0 & 2 v \\
v & u
\end{array}\right) .
$$

At $\boldsymbol{p}=(0,0)$, the image of $\mathrm{d}_{\boldsymbol{p}} \boldsymbol{f}$ is spanned by $\{(1,0,0),(0,0,0)\}$, i.e., by $(1,0,0)$ (the x-axis).
(c) $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$,

$$
f(x, y, z):=2 x^{2}+y^{2}-z^{2}, \quad J_{(x, y, z)} f=(4 x, 2 y,-2 z)
$$

(the gradient of f). Note that the Jacobi matrix of a scalar function is just the gradient. Here, the image of $\mathrm{d}_{\boldsymbol{p}} f$ is either $\mathbb{R}($ if $(x, y, z) \neq \mathbf{0})$ or $\{0\}$ (if $(x, y, z)=\mathbf{0}$).

Let us finally motivate the implicit function theorem
Example 5.6. Let $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ be given by $f(u, v)=u^{2}+v^{2}$. We want to solve the equation

$$
f(u, v)=c
$$

near some point $(a, b) \in \mathbb{R}^{2}$ for $c:=f(a, b) \geq 0$, i.e., we look for a function $g(u)=v$ such that $f(u, g(u))=$ c. The implicit function tells us that if $\partial_{v} f\left(u_{0}, v_{0}\right) \neq 0$ then this is possible. Here, $\partial_{v} f(a, b)=2 b$, and a simple calculation shows that

$$
f(u, v)=c \Longleftrightarrow v= \begin{cases}\sqrt{c-u^{2}}, & \text { if } b>0 \\ -\sqrt{c-u^{2}}, & \text { if } b<0\end{cases}
$$

Theorem 5.7 (Implicit function theorem). Let $W \subset \mathbb{R}^{p} \times \mathbb{R}^{m}$ be open and $f: W \longrightarrow \mathbb{R}^{m}$ be smooth. Let $(\boldsymbol{a}, \boldsymbol{b}) \in W\left(\boldsymbol{a} \in \mathbb{R}^{p}, \boldsymbol{b} \in \mathbb{R}^{m}\right)$ and $\boldsymbol{c}:=f(\boldsymbol{a}, \boldsymbol{b}) \in \mathbb{R}^{m}$. Consider a function $\boldsymbol{\varphi}: W \cap \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ defined by $\boldsymbol{y} \mapsto \boldsymbol{f}(\boldsymbol{a}, \boldsymbol{y})$. Its Jacobi matrix is

$$
J(\boldsymbol{a}, \boldsymbol{y})=\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}(\boldsymbol{a}, \boldsymbol{y})=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}}(\boldsymbol{a}, \boldsymbol{y}) & \ldots & \frac{\partial f_{1}}{\partial y_{m}}(\boldsymbol{a}, \boldsymbol{y}) \\
\vdots & & \vdots \\
\frac{\partial f_{m}}{\partial y_{1}}(\boldsymbol{a}, \boldsymbol{y}) & \ldots & \frac{\partial f_{m}}{\partial y_{m}}(\boldsymbol{a}, \boldsymbol{y})
\end{array}\right)
$$

Assume that $J(\boldsymbol{a}, \boldsymbol{y})$ is invertible at $\boldsymbol{y}=\boldsymbol{b}$. Then there exist open sets $U \subset \mathbb{R}^{p}, \boldsymbol{a} \in U$, and $V \subset \mathbb{R}^{m}$, $\boldsymbol{b} \in V$, and a smooth map $\boldsymbol{g}: U \rightarrow V$ with $\boldsymbol{g}(\boldsymbol{a})=\boldsymbol{b}$ such that

$$
\{(\boldsymbol{x}, \boldsymbol{y}) \in U \times V \mid \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{c}\}=\{(\boldsymbol{x}, \boldsymbol{g}(\boldsymbol{x})) \mid \boldsymbol{x} \in U\}
$$

(i.e. the level set of points $(\boldsymbol{x}, \boldsymbol{y})$ with $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{c}$ is locally a graph of some smooth function $\boldsymbol{g}: U \rightarrow V)$.

We will use this theorem in a particular case of $m=1$: having a function

$$
f: \mathbb{R}^{p+1} \rightarrow \mathbb{R}, \quad\left(x_{1}, \ldots, x_{p}, y\right) \mapsto f(\boldsymbol{x}, y), \quad f\left(\boldsymbol{x}_{0}, y_{0}\right)=c
$$

with $\frac{\partial f}{\partial y}\left(\boldsymbol{x}_{0}, y_{0}\right) \neq 0$, one has $y=g(\boldsymbol{x})$ in a neighborhood of \boldsymbol{x}_{0} for $f(\boldsymbol{x}, y)=c$.

