Durham University Pavel Tumarkin

Differential Geometry III, Term 1 (Section 6)

6 Surfaces

Recall that we defined a curve as a smooth map $\alpha \colon I \longrightarrow \mathbb{R}^n$. So a curve is a deformation of an interval, i.e., a piece of the real line.

Similarly, we look to define a surface as a deformation of an open subset in \mathbb{R}^2 . Intuitively, a surface in \mathbb{R}^n $(n \ge 3)$ is a subset of \mathbb{R}^n that looks locally like a subset of \mathbb{R}^2 .

6.1 Parametrizations of regular surfaces

Definition 6.1. A subset $S \subset \mathbb{R}^3$ is a *regular surface* if for every point $p \in S$ there exists an open set V in \mathbb{R}^3 containing p and a map $x: U \longrightarrow S \cap V$, where U is an open subset of \mathbb{R}^2 , such that

(a) \boldsymbol{x} is a smooth map; that is, if

$$\boldsymbol{x}(u,v) = (x_1(u,v), x_2(u,v), x_3(u,v))$$

then x_1, x_2, x_3 are smooth functions.

- (b) $\boldsymbol{x}: U \longrightarrow S \cap V$ is a homeomorphism, that is, \boldsymbol{x} has a continuous inverse $\boldsymbol{x}^{-1}: S \cap V \longrightarrow U$ (this condition excludes self-intersections).
- (c) The partial derivatives \boldsymbol{x}_u and \boldsymbol{x}_v are linearly independent for all $(u, v) \in U$ (this condition excludes singularities and dimension reduction).

 \boldsymbol{x} is called a *local parametrization* of S at p, and \boldsymbol{x}^{-1} is called a *local coordinate chart*.

Let us now come to some main classes of examples of surfaces:

6.2 Graphs of functions and level sets as surfaces

Proposition 6.2. Let $U \subset \mathbb{R}^2$ be open and $g: U \longrightarrow \mathbb{R}$ be a smooth function. Then the graph of g,

$$graph(g) := \left\{ \left(u, v, g(u, v) \in \mathbb{R}^3 \mid (u, v) \in U \right\} \right\}$$

is a regular surface in \mathbb{R}^3 .

Example 6.3.

(a) Let $U = \mathbb{R}^2$ and

$$g(u,v) = \frac{u^2}{a^2} + \frac{v^2}{b^2}$$

then the graph of g is a surface: an *elliptic paraboloid*.

(b) Similarly, let

$$g(u,v) = \frac{u^2}{a^2} - \frac{v^2}{b^2}$$

then the graph of g is a hyperbolic paraboloid.

Example 6.4. The *sphere* of radius r > 0 and center **0** is defined as

$$S(r) := \left\{ (x, y, z) \in \mathbb{R}^3 \, \big| \, x^2 + y^2 + z^2 - r^2 = 0 \right\}.$$

Example 6.5. Consider the function $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ given by $f(x, y, z) = x^2 + y^2 + z^2$. Then the sphere S(r) of radius r > 0 is the level set r^2 of f, i.e.,

$$S(r) = \left\{ (x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = r^2 \right\} =: f^{-1}(r^2)$$

All the level sets $f^{-1}(r^2)$ are *regular surfaces*, except for $c = r^2 = 0$. The value c = 0 corresponds to the point $\boldsymbol{x} = (x, y, z) = \boldsymbol{0}$. Note that

$$\nabla f = (\partial_x f, \partial_y f, \partial_z) = (2x, 2y, 2z)$$

and that $\nabla f(\mathbf{x}) = 0$ iff $\mathbf{x} = \mathbf{0}$. We have to exclude such values!

Definition 6.6. Let $U \subset \mathbb{R}^3$ be open and $f: U \longrightarrow \mathbb{R}$ be smooth. A value $c \in \mathbb{R}$ in the range f(U) of f is called *regular value* of f if $\nabla f(\mathbf{p}) = (\partial_x f, \partial_y f, \partial_z f)(\mathbf{p}) \neq \mathbf{0}$ for all $\mathbf{p} \in U$ such that $f(\mathbf{p}) = c$.

A point p is called *critical point* if $\nabla f(p) = 0$. In this case c = f(p) is a *critical value* of f.

So $c = r^2 > 0$ is a regular value of f from the previous example, and c = 0 is a critical value.

Proposition 6.7. Let $U \subset \mathbb{R}^3$ be open and $f: U \longrightarrow \mathbb{R}$ be smooth, let $c \in f(U)$ be a regular value of f. Then

$$f^{-1}(c) := \left\{ \left. \boldsymbol{x} \in U \right| f(\boldsymbol{x}) = c \right\}$$

is a regular surface.

Example 6.8.

- (a) $S(r) = \{ (x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = r^2 \}$ is the level set of f, where $f(x, y, z) = x^2 + y^2 + z^2$, i.e., $S(r) = f^{-1}(r^2)$. S(r) is a regular surface if r > 0.
- (b) Let $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$ be given by $f(x, y, z) = x^2 + y^2 z^2$. Let $S = f^{-1}(1)$ be the level set 1 of f. Since c = 1 is a regular value of f, S is a regular surface, a hyperboloid of one sheet.
- (c) With the same f as before, $f^{-1}(-1)$ is called the *hyperboloid of two sheets*. The value -1 is again a regular value, so the hyperboloid of two sheets is regular.
- (d) A cylinder given by those points $(x, y, z) \in \mathbb{R}^3$ such that $x^2 + y^2 = 1$ is a regular surface.

6.3 Change of parameters

Definition 6.9. Let U, V be two open sets. A smooth map $h: V \longrightarrow U$ is called a *diffeomorphism* if it is bijective and if the inverse $h^{-1}: U \longrightarrow V$ is also smooth.

Example 6.10. Let $U = V = \mathbb{R}$. Then h(x) = x is a diffeomorphism, but $h(x) = x^3$ is not.

- **Proposition 6.11.** (a) Let $S \subset \mathbb{R}^3$ be a surface and let $\boldsymbol{x} \colon U \subset \mathbb{R}^2 \longrightarrow S$ be a local parametrization. Let $\boldsymbol{h} \colon V \subset \mathbb{R}^2 \longrightarrow U$ be a diffeomorphism. Then $\boldsymbol{y} = \boldsymbol{x} \circ \boldsymbol{h} \colon V \longrightarrow S$ is also a local parametrization.
 - (b) Let $\boldsymbol{x}: U \longrightarrow S$ and $\boldsymbol{y}: V \longrightarrow S$ be two local parametrizations with $\boldsymbol{x}(U) = \boldsymbol{y}(V) \subset S$ (i.e., \boldsymbol{x} and \boldsymbol{y} cover the same region of the surface). Then $\boldsymbol{x}^{-1} \circ \boldsymbol{y}: V \longrightarrow U$ is a diffeomorphism.

6.4 Special surfaces

Surfaces constructed by a plane and space curves.

Example 6.12. Surface of revolution. Let I be an open interval in \mathbb{R} and $\tilde{\alpha} \colon I \longrightarrow \mathbb{R}^2$ be a regular smooth plane curve, $\tilde{\alpha}(v) = (f(v), g(v))$. Define a space curve $\alpha(v) = (f(v), 0, g(v))$. Assume that α has no self-intersections (i.e. $\alpha(u) \neq \alpha(v)$ if $u \neq v$) and that $f(v) \neq 0$, so α does not meet the z-axis.

Now rotate α about the z-axis. The set

$$S := \left\{ \left(f(v) \cos u, f(v) \sin u, g(v) \right) \mid u \in \mathbb{R}, v \in I \right\}$$

is a surface, called a *surface of revolution*.

The curve α is called the *generating curve*. The circles swept out by points of $bm\alpha$ are called *parallels*, and the curves obtained by rotating α through a fixed angle are *meridians*.

Examples: cylinder (α is a vertical line), catenoid ($\alpha(v) = (\cosh v, 0, v), v \in \mathbb{R}$).

Example 6.13. Canal surfaces.

Let $\alpha: I \longrightarrow \mathbb{R}^3$ be a smooth regular non-self-intersecting space curve parametrized by arc length. Choose r > 0 small enough, and consider the family of circles in the normal plane (i.e., spanned by n(s) and b(s) with center $\alpha(s)$ and radius r. These form a surface called a *canal surface* or *tubular* neighbourhood of α . This surface is parametrized by

$$\boldsymbol{x}(s,\vartheta) = \boldsymbol{\alpha}(s) + r(\boldsymbol{n}(s)\cos\vartheta + \boldsymbol{b}(s)\sin\vartheta).$$

Example 6.14. Ruled surfaces. Let $\alpha \colon I \longrightarrow \mathbb{R}^3$ be a smooth regular space curve (without selfintersections) and $\boldsymbol{w} \colon I \longrightarrow \mathbb{R}^3$ be a smooth map which is never zero. Suppose that $\alpha'(u)$ is not parallel to $\boldsymbol{w}(u)$ (where $\boldsymbol{w}(u)$ is viewed as a vector). We consider the family of segments of lines through $\boldsymbol{\alpha}(u)$ and parallel to $\boldsymbol{w}(u)$.

These form a surface call a *ruled surface*. If we take J = (-a, a), with a small enough, then

$$\boldsymbol{x}(u,v) = \boldsymbol{\alpha}(u) + v\boldsymbol{w}(u), u \in I, v \in J$$

is a parametrization of a ruled surface.

Example 6.15. $f(x, y, z) := x^2 + y^2 - z^2$ defines a smooth function $f \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$, and 1 is a regular value, hence $S = f^{-1} = \{(x, y, z) \mid x^2 + y^2 - z^2 = 1\}$ is a regular surface, a hyperboloid of one sheet. It is a surface of revolution and a ruled surface.