Differential Geometry III, Term 1 (Section 6)

6 Surfaces

Recall that we defined a curve as a smooth map $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{n}$. So a curve is a deformation of an interval, i.e., a piece of the real line.

Similarly, we look to define a surface as a deformation of an open subset in \mathbb{R}^{2}. Intuitively, a surface in $\mathbb{R}^{n}(n \geq 3)$ is a subset of \mathbb{R}^{n} that looks locally like a subset of \mathbb{R}^{2}.

6.1 Parametrizations of regular surfaces

Definition 6.1. A subset $S \subset \mathbb{R}^{3}$ is a regular surface if for every point $p \in S$ there exists an open set V in \mathbb{R}^{3} containing p and a map $\boldsymbol{x}: U \longrightarrow S \cap V$, where U is an open subset of \mathbb{R}^{2}, such that
(a) \boldsymbol{x} is a smooth map; that is, if

$$
\boldsymbol{x}(u, v)=\left(x_{1}(u, v), x_{2}(u, v), x_{3}(u, v)\right)
$$

then x_{1}, x_{2}, x_{3} are smooth functions.
(b) $\boldsymbol{x}: U \longrightarrow S \cap V$ is a homeomorphism, that is, \boldsymbol{x} has a continuous inverse $\boldsymbol{x}^{-1}: S \cap V \longrightarrow U$ (this condition excludes self-intersections).
(c) The partial derivatives \boldsymbol{x}_{u} and \boldsymbol{x}_{v} are linearly independent for all $(u, v) \in U$ (this condition excludes singularities and dimension reduction).
\boldsymbol{x} is called a local parametrization of S at p, and \boldsymbol{x}^{-1} is called a local coordinate chart.
Let us now come to some main classes of examples of surfaces:

6.2 Graphs of functions and level sets as surfaces

Proposition 6.2. Let $U \subset \mathbb{R}^{2}$ be open and $g: U \longrightarrow \mathbb{R}$ be a smooth function. Then the graph of g,

$$
\operatorname{graph}(g):=\left\{\left(u, v, g(u, v) \in \mathbb{R}^{3} \mid(u, v) \in U\right\}\right.
$$

is a regular surface in \mathbb{R}^{3}.

Example 6.3.

(a) Let $U=\mathbb{R}^{2}$ and

$$
g(u, v)=\frac{u^{2}}{a^{2}}+\frac{v^{2}}{b^{2}},
$$

then the graph of g is a surface: an elliptic paraboloid.
(b) Similarly, let

$$
g(u, v)=\frac{u^{2}}{a^{2}}-\frac{v^{2}}{b^{2}},
$$

then the graph of g is a hyperbolic paraboloid.

Example 6.4. The sphere of radius $r>0$ and center $\mathbf{0}$ is defined as

$$
S(r):=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}-r^{2}=0\right\} .
$$

Example 6.5. Consider the function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ given by $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the sphere $S(r)$ of radius $r>0$ is the level set r^{2} of f, i.e.,

$$
S(r)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=r^{2}\right\}=: f^{-1}\left(r^{2}\right)
$$

All the level sets $f^{-1}\left(r^{2}\right)$ are regular surfaces, except for $c=r^{2}=0$. The value $c=0$ corresponds to the point $\boldsymbol{x}=(x, y, z)=\mathbf{0}$. Note that

$$
\nabla f=\left(\partial_{x} f, \partial_{y} f, \partial_{z}\right)=(2 x, 2 y, 2 z)
$$

and that $\nabla f(\boldsymbol{x})=0$ iff $\boldsymbol{x}=\mathbf{0}$. We have to exclude such values!
Definition 6.6. Let $U \subset \mathbb{R}^{3}$ be open and $f: U \longrightarrow \mathbb{R}$ be smooth. A value $c \in \mathbb{R}$ in the range $f(U)$ of f is called regular value of f if $\nabla f(\boldsymbol{p})=\left(\partial_{x} f, \partial_{y} f, \partial_{z} f\right)(\boldsymbol{p}) \neq \mathbf{0}$ for all $\boldsymbol{p} \in U$ such that $f(\boldsymbol{p})=c$.

A point \boldsymbol{p} is called critical point if $\nabla f(\boldsymbol{p})=\mathbf{0}$. In this case $c=f(\boldsymbol{p})$ is a critical value of f.
So $c=r^{2}>0$ is a regular value of f from the previous example, and $c=0$ is a critical value.
Proposition 6.7. Let $U \subset \mathbb{R}^{3}$ be open and $f: U \longrightarrow \mathbb{R}$ be smooth, let $c \in f(U)$ be a regular value of f. Then

$$
f^{-1}(c):=\{\boldsymbol{x} \in U \mid f(\boldsymbol{x})=c\}
$$

is a regular surface.

Example 6.8.

(a) $S(r)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=r^{2}\right\}$ is the level set of f, where $f(x, y, z)=x^{2}+y^{2}+z^{2}$, i.e., $S(r)=f^{-1}\left(r^{2}\right) . S(r)$ is a regular surface if $r>0$.
(b) Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be given by $f(x, y, z)=x^{2}+y^{2}-z^{2}$. Let $S=f^{-1}(1)$ be the level set 1 of f. Since $c=1$ is a regular value of f, S is a regular surface, a hyperboloid of one sheet.
(c) With the same f as before, $f^{-1}(-1)$ is called the hyperboloid of two sheets. The value -1 is again a regular value, so the hyperboloid of two sheets is regular.
(d) A cylinder given by those points $(x, y, z) \in \mathbb{R}^{3}$ such that $x^{2}+y^{2}=1$ is a regular surface.

6.3 Change of parameters

Definition 6.9. Let U, V be two open sets. A smooth map $\boldsymbol{h}: V \longrightarrow U$ is called a diffeomorphism if it is bijective and if the inverse $\boldsymbol{h}^{-1}: U \longrightarrow V$ is also smooth.

Example 6.10. Let $U=V=\mathbb{R}$. Then $\boldsymbol{h}(x)=x$ is a diffeomorphism, but $\boldsymbol{h}(x)=x^{3}$ is not.
Proposition 6.11. (a) Let $S \subset \mathbb{R}^{3}$ be a surface and let $\boldsymbol{x}: U \subset \mathbb{R}^{2} \longrightarrow S$ be a local parametrization. Let $\boldsymbol{h}: V \subset \mathbb{R}^{2} \longrightarrow U$ be a diffeomorphism. Then $\boldsymbol{y}=\boldsymbol{x} \circ \boldsymbol{h}: V \longrightarrow S$ is also a local parametrization.
(b) Let $\boldsymbol{x}: U \longrightarrow S$ and $\boldsymbol{y}: V \longrightarrow S$ be two local parametrizations with $\boldsymbol{x}(U)=\boldsymbol{y}(V) \subset S$ (i.e., \boldsymbol{x} and \boldsymbol{y} cover the same region of the surface). Then $\boldsymbol{x}^{-1} \circ \boldsymbol{y}: V \longrightarrow U$ is a diffeomorphism.

6.4 Special surfaces

Surfaces constructed by a plane and space curves.

Example 6.12. Surface of revolution. Let I be an open interval in \mathbb{R} and $\tilde{\boldsymbol{\alpha}}: I \longrightarrow \mathbb{R}^{2}$ be a regular smooth plane curve, $\tilde{\boldsymbol{\alpha}}(v)=(f(v), g(v))$. Define a space curve $\boldsymbol{\alpha}(v)=(f(v), 0, g(v))$. Assume that $\boldsymbol{\alpha}$ has no self-intersections (i.e. $\boldsymbol{\alpha}(u) \neq \boldsymbol{\alpha}(v)$ if $u \neq v$) and that $f(v) \neq 0$, so $\boldsymbol{\alpha}$ does not meet the z-axis.

Now rotate $\boldsymbol{\alpha}$ about the z-axis. The set

$$
S:=\{(f(v) \cos u, f(v) \sin u, g(v)) \mid u \in \mathbb{R}, v \in I\}
$$

is a surface, called a surface of revolution.
The curve $\boldsymbol{\alpha}$ is called the generating curve. The circles swept out by points of $b m \alpha$ are called parallels, and the curves obtained by rotating $\boldsymbol{\alpha}$ through a fixed angle are meridians.

Examples: cylinder ($\boldsymbol{\alpha}$ is a vertical line), catenoid $(\boldsymbol{\alpha}(v)=(\cosh v, 0, v), v \in \mathbb{R})$.

Example 6.13. Canal surfaces.

Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ be a smooth regular non-self-intersecting space curve parametrized by arc length. Choose $r>0$ small enough, and consider the family of circles in the normal plane (i.e., spanned by $\boldsymbol{n}(s)$ and $\boldsymbol{b}(s)$ with center $\boldsymbol{\alpha}(s)$ and radius r. These form a surface called a canal surface or tubular neighbourhood of $\boldsymbol{\alpha}$. This surface is parametrized by

$$
\boldsymbol{x}(s, \vartheta)=\boldsymbol{\alpha}(s)+r(\boldsymbol{n}(s) \cos \vartheta+\boldsymbol{b}(s) \sin \vartheta) .
$$

Example 6.14. Ruled surfaces. Let $\boldsymbol{\alpha}: I \longrightarrow \mathbb{R}^{3}$ be a smooth regular space curve (without selfintersections) and $\boldsymbol{w}: I \longrightarrow \mathbb{R}^{3}$ be a smooth map which is never zero. Suppose that $\boldsymbol{\alpha}^{\prime}(u)$ is not parallel to $\boldsymbol{w}(u)$ (where $\boldsymbol{w}(u)$ is viewed as a vector). We consider the family of segments of lines through $\boldsymbol{\alpha}(u)$ and parallel to $\boldsymbol{w}(u)$.

These form a surface call a ruled surface. If we take $J=(-a, a)$, with a small enough, then

$$
\boldsymbol{x}(u, v)=\boldsymbol{\alpha}(u)+v \boldsymbol{w}(u), u \in I, v \in J
$$

is a parametrization of a ruled surface.
Example 6.15. $f(x, y, z):=x^{2}+y^{2}-z^{2}$ defines a smooth function $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}$, and 1 is a regular value, hence $S=f^{-1}=\left\{(x, y, z) \mid x^{2}+y^{2}-z^{2}=1\right\}$ is a regular surface, a hyperboloid of one sheet. It is a surface of revolution and a ruled surface.

